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Abstract. Accurate localization and identification of vertebrae from CT
images is a fundamental step in clinical spine diagnosis and treatment.
Previous methods have made various attempts in this task; however,
they fail to robustly localize the vertebrae with challenging appearance
or identify vertebra labels from CT images with a limited field of view. In
this paper, we propose a novel two-stage framework, VertNet, for accu-
rate and robust vertebra localization and identification from CT images.
Our method first detects all vertebra centers by a weighted voting-based
localization network. Then, an identification network is designed to iden-
tify the label of each detected vertebra in leveraging the synergy of
global and local information. Specifically, a bidirectional relation mod-
ule is designed to learn the global correlation among vertebrae along
the upward and downward directions, and a continuous label map with
dense annotation is employed to enhance the feature learning in local ver-
tebra patches. Extensive experiments on a large dataset collected from
real-world clinics show that our framework can accurately localize and
identify vertebrae in various challenging cases and outperforms the state-
of-the-art methods.

1 Introduction

Localizing and identifying each vertebra from CT images are two essential steps
for clinical practice such as surgical planning [7,8], pathological diagnosis [5] and
post-operative assessment [9], as the shape of the spine can serve as an important
anatomical reference for other organs in these practices. To this end, doctors
usually need to manually localize and identify the vertebrae in CT images, which
is laborious and time-consuming. In this regard, a fully automatic method with
high precision is practically demanded.

Automating these steps have long been the goal for medical imaging
researches (e.g., [6,15,19]) but it remains a challenging task. This is because
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Fig. 1. Typical challenging cases: (a) Spine with pathological fracture; (b) Image with
metal artifacts; (c) Adjacent vertebrae having similar shape appearance; (d) Image
with a limited field of view.

many spines could be pathological (Fig. 1(a)) or with metal artifacts in the CT
images (Fig. 1(b)). More recently, deep learning algorithms that can exploit the
large-scale data have shown promising results for these two tasks. One line of
the previous works [1,17] employ a one-stage framework to directly segment
each of the vertebrae with the corresponding label. Yet, these methods are
prone to produce segmentation artifacts in challenging cases, especially where
adjacent vertebrae are similar in appearance (e.g., the 7th to the 9th thoracic
vertebrae as shown in Fig. 1(c)). To improve the performance, a two-stage app-
roach [4,10,13,16,18] has been proposed to first localize the vertebrae and then
identify the label of each vertebra. These methods utilize the Recurrent Neural
Network (RNN) or Long Short-Term Memory (LSTM) network for modeling
the relationship of neighboring vertebrae. However, such a model may not fully
capture the global dependency among all vertebrae and usually limit to local
regions, which is important for handling vertebra identification from CT images
with a limited field of view (Fig. 1(d)).

To address the aforementioned issues in challenging cases, we present a novel
two-stage learning framework for automatic vertebra localization and labeling.
Firstly, in the vertebra localization stage, instead of only utilizing the Gaussian-
like heatmap to represent the vertebra centers, we combine it with 3D vertebra
center offsets to generate more reliable vertebra positions with the supervision of
the Chamfer distance. Then, in the second stage of vertebra identification, with
the guidance of the detected vertebra centers, vertebra proposals are generated
and fed to the identification network for vertebra labeling. As both global and
local information are essential for accurate vertebra identification, we propose a
bidirectional relation module to capture the global relationships among verte-
brae using a self-attention mechanism. Moreover, we also introduce a continuous
label map to parameterize the sequence of discrete vertebrae labels, and formu-
late the prediction of the continuous label map as an additional task for learning
fine-grained features in local proposal patches. Our framework was extensively
evaluated on a large dataset collected from clinics, which includes many chal-
lenging cases. Compared with the state-of-the-art performance, our proposed
approach achieved superior results qualitatively and quantitatively, giving the
high usability in real-world clinical practices.
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Fig. 2. An overview of the proposed VertNet for vertebra localization (Sect. 2.1) and
identification (Sect. 2.2) from input CT image.

2 Method

An overview of our VertNet for vertebra localization and identification in CT
images is shown in Fig. 2, which consists of the localization and identification
sub-networks. We elaborate the framework in this section.

2.1 Vertebrae Localization

To localize each vertebra in CT images accurately, we formulate it as a vertebra
center point prediction problem. An intuitive solution is to directly regress the
3D vertebra heatmap representing the centers, but it is prone to fail, especially
around the cervical vertebrae that pack tightly and are hard to be separated.

Formally, as shown in Fig. 2, the localization network with two output
branches takes as input a 3D CT image to predict a one channel Gaussian-
like 3D heatmap H and a three channel offset map O, respectively. The former
is centered at the vertebra center points with a small standard deviation δ=3
voxel-size, while the later indicates the 3D offset vectors of each voxel pointing
to its nearest vertebra center.

To localize each vertebra, we first obtain all foreground voxels F from the 3D
heatmap H (H > 0.2). Then, for each foreground voxel f i ∈ F , we consider its
3D offset as a vote to the vertebra center and treat the associated 3D heatmap
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value as the weight of this vote. Thus, the weighted vote map M is formed by
accumulating all the weighted votes. For example, the foreground voxel (0, 0, 1)
with an offset vector (0, 1, 0) and a heatmap value 0.7 would contribute to the
voxel (0, 1, 1) = (0, 0, 1) + (0, 1, 0) in the weighted vote map with a weight 0.7.
Finally, we directly adopt a fast peak search clustering method [14] to find and
localize the density peaks in M as the predicted vertebra center points, denoted
as V . The rationale is that the clustering vertebrae centers usually have relatively
high density values (i.e., weighted votes) and large distance to the nearest voxel
with a higher density value, which is defined as:

V = (M i > δ) ∩ (Di > λ), (1)

where Di refers to the distance between voxel i and its nearest voxel with a
higher density value than M i. The thresholds δ and λ are set as 2.0 and 5.0.

To train the localization network, we propose several loss terms to supervise
the learning process. Specifically, in the learning of 3D heatmap H and offset
O, the smooth L1 loss is employed to calculate the regression error, denoted
as LsmoothL1

H and LsmoothL1
O , respectively. In addition, to robustly regress the

centers, we introduce the Chamfer distance [3,12] to minimize the bidirectional
distance between the candidate center set ̂C before clustering (i.e., any voxel
with a value higher than 2.0 in the weighted vote map) and the ground-truth
center set C, defined as:

LCD =
∑

ĉi∈Ĉ

min
ck∈C

||ĉi − ck||22 +
∑

ck∈C

min
ĉi∈Ĉ

||ck − ĉi||22. (2)

Finally, the total loss Lloc of the localization network is formulated as Lloc =
LsmoothL1
H +LsmoothL1

O +βLCD, where β is the balancing weight and empirically
set to 0.2 for all experiments.

2.2 Vertebrae Identification

As shown in the bottom part of Fig. 2, with all the detected vertebra centers,
we further assign the label of each vertebra using an identification network.
Considering both global and local information are important for accurate verte-
bra identification, we model the inter-vertebra relationships via a bidirectional
relation module at the global scale, and further introduce a novel continuous
vertebra label map to enhance the feature learning in each local vertebra patch.

Vertebra Proposal Generation. We generate vertebra proposals guided by
the detected vertebra centers. First, we select one vertebra point and crop an
image patch from the input 3D CT image I. We then generate an equal-sized
center patch using a Gaussian filter centered at the selected vertebra point with
a small standard deviation δ = 3 voxel-size, which serves as a guidance signal.
Finally, each image patch is concatenated with the corresponding center patch,
yielding a two-channel proposal for the identification network.
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Fig. 3. The process of continuous label map generation, including (a) vertebra centers
with labels, (b) B-spine curve with labels, and (c) continuous label map.

Bidirectional Relation Module. For each two-channel vertebra proposal
pi ∈ P , we utilize an shared encoder to extract the feature fi. Since verte-
brae are sequentially connected together from top to bottom and neighboring
vertebrae share similar appearance, the contextual clues of the neighboring ver-
tebrae are quite important for accurate identification. Thus, given a proposal
pi, we utilize the self-attention mechanism to obtain the correlation features rupi
in upward direction and rdown

i in downward directions to encode the relation-
ship with the other vertebrae in corresponding directions. We take the upward
direction as an example to show the calculation of feature rupi of proposal pi,
and the same procedure is applied to computing feature rdown

i . Here, rupi is a
weighted sum of features extracted from upward vertebra proposals defined as
rupi =

∑i−1
k=1 wspatial

i(k) · wshape
i(k) · fk, where wspatial

i(k) refers to the spatial location

weight and wshape
i(k) refers to the shape similarity weight, defined in the following:

wspatial
i(k) = 1.0 − exp(dk)

∑i−1
j=1 exp(dj)

, wshape
i(k) =

exp(fT
k fi)

∑i−1
j=1 exp(fT

j fi)
. (3)

dk measures the distance between centers of the k-th and the i-th proposals, while
the shape similarity weight measures the feature similarity. Lastly, we combine
the correlation features rupi and rdown

i with the proposal feature fi to derive the
corresponding label of vertebra i by several Fully-Connected (FC) layers.

Continuous Label Prediction. The straightforward classification approach
with sparse, discrete labels for different proposals receives insufficient supervision
and usually leads to inaccurate results. To tackle this problem, we introduce a
continuous label map, a novel representation of the vertebra labels, to enhance
the network to learn more reliable, fine-grained features. Specifically, as shown
in Fig. 3, we first fit a B-spline curve to the 3D coordinates of vertebra centers.
Then, we sample a dense set of points on the curve and assign a floating label by
linear interpolation of the nearest upward and downward vertebra center labels.
Finally, the label values on the curve is mapped to the whole 3D image space
based on the nearest neighbor searching. Finally, we add an extra decoder branch
to regress the voxel-wise continuous labels in each vertebra patch.
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Overall, the training loss Lid for identification is defined as Lid = Lcls+ηLreg,
where Lcls is the cross-entropy loss for classifying the vertebra labels, and Lreg is
the smooth L1 loss for regressing the continuous label map. The hyper-parameter
η is empirically chosen as 0.5 to balance the loss terms.

Post-label Voting. Although the identification network already achieves excel-
lent performance, we still observed a few incorrect predictions of the vertebra
labels due to insufficient image quality such as motion effects. To correct the
prediction error, we employ a voting-based post-processing based on two facts
that: 1) vertebra labels always monotonically increase or decrease, and 2) most
of our labels are correct. Because every vertebra also implicitly carries the labels
of others based on their own labels and adjacency, we finally use the voted label
as the resulting label for each vertebra.

2.3 Implementation Details

We employed V-Net [11] as the network backbone of our two-stage framework.
In the localization network, all CT scans were randomly cropped into the same
input size of 256 × 256 × 256, and the cropped patch size of the identification
network was set as 96 × 96 × 96 to ensure that the target vertebra can be
entirely enclosed. We used the Adam optimizer with an initial learning rate
of 0.01 divided by 10 every 5000 iterations. Both networks were trained 20K
iterations. It took about 10 h to train the localization network and 12 h for the
identification network on a single Tesla M40 GPU.

3 Experiments

3.1 Dataset and Evaluation Metric

We have extensively evaluated our framework on 1000 chest CT images collected
from real-world clinics which contain many cases with severe pathological spine
problems. These scans have been pre-processed with isotropic resolution of 1.0×
1.0 × 1.0 mm3. All vertebra centers and labels are annotated by experienced
radiologists. We randomly split the 1000 scans into 600 for training, 100 scans
for validation, and the remaining 300 scans for testing.

To quantitatively evaluate the performance of our framework, we first mea-
sure the localization error (mm) as the distance of each predicted vertebra center
to its nearest ground-truth vertebra center. As for the vertebra labeling task,
we compute the identification accuracy (%) at the vertebra and patient levels
(denoted as Idacc-V and Idacc-P, respectively). The former measures the percent-
age of the correctly identified vertebrae per-patient, while the later measures the
percentage of the patients whose vertebrae are all correctly identified. For both
networks, we also reported the specific metrics of cervical vertebrae (Cer.), tho-
racic vertebrae (Tho.), lumbar vertebrae (Lum.), as shown in Tables 1 and 2.
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Table 1. Quantitative vertebra localization results of alternative networks. The iden-
tification task is performed using the baseline network bNetid.

Method Localization [mm] ↓ Identification [%] ↑
Cer. Tho. Lum. All Idacc-V Idacc-P

bNetvl 3.1 ± 3.1 3.8 ± 1.9 3.3 ± 2.5 3.3 ± 2.3 82.1 51.3

bNetvl-W 1.7 ± 1.1 2.4 ± 1.5 2.1 ± 1.6 2.0 ± 1.3 86.4 57.3

Table 2. Quantitative vertebra identification results of alternative networks. The
higher the percentage value (%), the better the identification accuracy (↑).

Method Cer. Tho. Lum. Idacc-V Idacc-P

bNetid 87.2 86.0 86.9 86.4 57.3

bNetid-R 91.3 89.0 90.2 90.5 82.3

bNetid-R-C 96.8 94.7 96.1 96.1 92.3

FullNet 99.1 98.6 98.7 98.9 98.7

3.2 Ablation Study of Key Components

We conduct ablative experiments to demonstrate the effectiveness of the pro-
posed components. We first build the baseline networks for the vertebra localiza-
tion and identification tasks, denoted as bNetvl and bNetid, respectively. bNetvl
directly detects vertebrae using a 3D heatmap, while bNetid simply builds upon
a multi-label classification network without the bidirectional relation module and
continuous label prediction in our identification task. All alternative networks
are derived from the baseline networks by augmenting different components.

Benefits of Weighted-Voting Scheme. Unlike the direct heatmap regression,
we utilize the weighted-voting scheme by combining a 3D offset map with the 3D
heatmap with the Chamfer loss as an additional supervision. For validation, we
augment the baseline bNetvl with an extra output branch to generate 3D offsets
followed by the post-clustering, denoted as bNetvl-W. The quantitative results
are shown in Table 1. Compared to bNetvl, bNetvl-W consistently improves the
localization and identification accuracy. The mean and variance of the localiza-
tion error are decreased, leading to more robust results. For cervical vertebrae
smaller in size and tightly packed, benefit of the weighted-voting scheme is much
clearer (reduced by 1.4 mm). This results in an increase of 4.3% (and 6.0%) in
Idacc-V (and Idacc-P) with bNetid.

Benefits of Bidirectional Relation Module. We utilize the bNetvl-W as the
localization network and augment the identification baseline network (bNetid)
with the bidirectional relation module, denoted as bNetid-R. Table 2 shows that
the bNetid-R consistently improves the identification accuracy, 25.0% in Idacc-P,
illustrating high efficacy of this module for the sequential prediction task.
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Fig. 4. Comparison between our results (blue) and those by Deep-HMM (yellow)
against the ground-truth (GT) (red). Seven typical examples are presented: metal
artifacts (1, 7), pathological spines (2, 3), and limited field of view (4, 5, 6, 7). The GT
label is annotated if incorrect prediction occurs. (Color figure online)

Table 3. Quantitative comparison with state-of-the-art methods.

Method Localization Idacc-V Idacc-P

J-CNN [1] 7.6 ± 12.4 86.7 60.7

ML-LSTM [13] 2.7 ± 2.8 90.0 79.3

Deep-HMM [2] 2.5 ± 2.3 95.2 89.3

Ours 2.0 ± 1.3 98.9 98.7

Benefits of Continuous Label Prediction. We augment bNetid-R with this
extra task, denoted as bNetid-R-C. As shown in Table 2, compared to the bNetid-
R, Idacc-V improves significantly from 90.5% to 96.1%. This shows the task of
continuous label prediction can effectively facilitate the network to learn more
discriminative features for fine-grained classification.

Benefits of Post-label Voting. In our FullNet (VertNet), a voting-based post-
processing step is added on top of bNetid-R-C, to generate consistent and correct
labels. As presented in Table 2, FullNet obtains the best performance. Notably,
the Idacc-P is significantly boosted to 98.7%, which suggests the potential appli-
cability of our framework in real-world clinical scenarios. A set of typical visual
results are shown in Fig. 4 with centers projected to the specific CT slice.

3.3 Comparison with State-of-the-Art Methods

We implemented three state-of-the-art vertebra localization and identification
methods for comparison, including a one-stage method (J-CNN [1]) and two-
stage methods (ML-LSTM [13] and Deep-HMM [2]). Instead of using the CSI
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2014 dataset, we train and test all the networks on our newly collected dataset
which has a larger sample size and contains more challenging cases. Table 3
shows ML-LSTM and Deep-HMM outperform J-CNN by a large margin. Com-
pared with ML-LSTM, our network with the bidirectional relation module and
continuous label prediction generates more reliable vertebra labels. Compared
to our bidirectional module for modeling the global relationship among verte-
brae, Deep-HMM employs the Markov modeling of vertebra labels which is lim-
ited to short-range relationships. As a result, our method significantly outruns
DeepHMM in the identification accuracy (3.7% and 9.4% increases on Idacc-V
and Idacc-P, respectively). Figure 4 shows qualitative results between ours (blue)
and those by DeepHMM (yellow) against GT labels (red) on challenging cases
with metal artifacts, pathological spines, or limited field of views, further sup-
porting our design choices.

4 Conclusion

We investigated the problem of vertebra localization and labeling from CT
images. The proposed two-stage framework accurately detects all the vertebra
centers and successfully identifies all the vertebra labels with satisfactory high
accuracy. We qualitatively and quantitatively evaluated our method on our repre-
sentative clinical dataset and compared against the state-of-the-art approaches.
The superior performance suggests the potential applicability of our framework
in real-world clinical scenarios.
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