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A fully automatic AI system for tooth and alveolar
bone segmentation from cone-beam CT images
Zhiming Cui 1,2,3,10, Yu Fang 1,10, Lanzhuju Mei 1,10, Bojun Zhang4,10, Bo Yu5, Jiameng Liu1, Caiwen Jiang1,

Yuhang Sun1, Lei Ma1, Jiawei Huang1, Yang Liu6, Yue Zhao7✉, Chunfeng Lian8✉, Zhongxiang Ding9✉,

Min Zhu4✉ & Dinggang Shen1,3✉

Accurate delineation of individual teeth and alveolar bones from dental cone-beam CT

(CBCT) images is an essential step in digital dentistry for precision dental healthcare. In this

paper, we present an AI system for efficient, precise, and fully automatic segmentation of

real-patient CBCT images. Our AI system is evaluated on the largest dataset so far, i.e., using

a dataset of 4,215 patients (with 4,938 CBCT scans) from 15 different centers. This fully

automatic AI system achieves a segmentation accuracy comparable to experienced radi-

ologists (e.g., 0.5% improvement in terms of average Dice similarity coefficient), while sig-

nificant improvement in efficiency (i.e., 500 times faster). In addition, it consistently obtains

accurate results on the challenging cases with variable dental abnormalities, with the average

Dice scores of 91.5% and 93.0% for tooth and alveolar bone segmentation. These results

demonstrate its potential as a powerful system to boost clinical workflows of digital dentistry.
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W ith the improved living standards and elevated
awareness of dental health, an increasing number of
people are seeking dental treatments (e.g., orthodon-

tics, dental implants, and restoration) to ensure normal function
and improve facial appearance1–3. As reported by the Oral Dis-
ease Survey4, nearly 90% of people in the world suffer from a
certain degree of dental problems, and many of them need dental
treatments. In clinical practice of dental treatments, medical
imaging with different modalities, such as 2D panoramic X-rays,
3D intra-oral scans, and 3D cone-beam computed tomography
(CBCT) images, are commonly acquired to assist diagnosis,
treatment planning, and surgery. Among all available options,
CBCT imaging is a sole modality to provide comprehensive 3D
volumetric information of complete teeth and alveolar bones.
Hence, segmenting individual teeth and alveolar bony structures
from CBCT images to reconstruct a precise 3D model is essential
in digital dentistry.

Although automatic segmentation of teeth and alveolar bones
has been continuously studied in the medical image computing
community, it is still a practically and technically challenging task
without any clinically applicable system. Many methods have
been explored over the last decade to design hand-crafted features
(e.g., level set, graph cut, or template fitting) for tooth
segmentation5–13. These low-level descriptors/features are sensi-
tive to complicated appearances of dental CBCT images (e.g.,
limited intensity contrast between teeth and surrounding tissues),
thus requiring tedious human interventions for initialization or
post-correction. Recently, deep learning, e.g., based on convolu-
tional neural networks (CNNs), shows promising applications in
various fields due to its strong ability of learning representative
and predictive features in a task-oriented fashion from large-scale
data14–23. Encouraged by the great success of deep learning in
computer vision and medical image computing, a series of studies
attempt to implement deep neural networks for tooth and/or
bony structure segmentation24–30. However, these existing
methods are still far from fully automatic or clinically applicable,
due to three main challenges. First, fully automatic tooth and
alveolar bone segmentation is complex consisting of at least three
main steps, including dental region of interest (ROI) localization,
tooth segmentation, and alveolar bone segmentation. Previous
works cannot conduct all these steps fully automatically in an
end-to-end fashion, as they typically focus only on a single step,
such as tooth segmentation on predefined ROI region24–30 or
alveolar bone segmentation31,32. Second, it is hard to handle
complicated cases commonly existing in clinical practice, e.g.,
CBCT images with dramatic-variations in structures scanned
from patients with dental problems (e.g., missing teeth, mis-
alignment, and metal artifacts). Third, previous methods are
usually implemented and tested on very small-sized datasets (i.e.,
10–30 CBCT scans), limiting their generalizability or applicability
on the CBCT images acquired with different imaging protocols
and diverse patient populations.

In this study, we develop a deep-learning-based AI system that
is clinically stable and accurate for fully automatic tooth and
alveolar bone segmentation from dental CBCT images. In parti-
cular, for tooth segmentation, an ROI generation network first
localizes the foreground region of the upper and lower jaws to
reduce computational costs in performing segmentation on high-
resolution 3D CBCT images. Then, a specific two-stage deep
network explicitly leverages the comprehensive geometric infor-
mation (naturally inherent from hierarchical morphological
components of teeth) to precisely delineate individual teeth.
Concurrently, for alveolar bone segmentation, a specific filter-
enhanced network first enhances intensity contrasts around bone
boundaries and then combines the enhanced image with the
original one to precisely annotate bony structures. To validate the

robustness and generalizability of our AI system, we evaluate it on
the largest dataset so far (i.e., 4938 CBCT scans of 4215 patients)
from 15 different centers with varying data distributions. In
addition, the clinical utility or applicability of our AI system is
also carefully verified by a detailed comparison of its segmenta-
tion accuracy and efficiency with two expert radiologists.

Results
Study design and participants. In this work, we collected large-
scale CBCT imaging data from multiple hospitals in China,
including the Stomatological Hospital of Chongqing Medical
University (CQ-hospital), the First People’s Hospital of Hang-
zhou (HZ-hospital), the Ninth People’s Hospital of Shanghai Jiao
Tong University (SH-hospital), and 12 dental clinics. All dental
CBCT images were scanned from patients in routine clinical care.
Most of these patients need dental treatments, such as ortho-
dontics, dental implants, and restoration. In total, we collected
4938 CBCT scans of 4215 patients (mean age: 38.4, with 2312
females and 1903 males) from the CQ-hospital, HZ-hospital, and
SH-hospital as the internal dataset, and 407 CBCT scans of 404
patients from the remaining 12 dental clinics as the external
dataset.

The detailed imaging protocols of the studied data (i.e., image
resolution, manufacturer, manufacturer’s model, and radiation
dose information of tube current and tube voltage) are listed in
Table 1. To intuitively show the image style variations across
different manufacturers caused by radiation dose factors (i.e., tube
current, tube voltage, etc), we also provide a heterogeneous
intensity histogram of the CBCT data collected from different
centers and different manufacturers. As shown in Fig. 1a, we can
find that there are large appearance variations across data,
indicating necessity of collecting a large-scale dataset for
developing an AI system with good robustness and general-
izability. Besides the demographic variables and imaging proto-
cols, Table 1 also shows data distribution for dental abnormality,
including missing teeth, misalignment, and metal artifacts.
Notably, as a strong indicator of clinical applicability, it is crucial
to verify the feasibility and robustness of an AI-based segmenta-
tion system on challenging cases with dental abnormalities as
commonly encountered in practice. To define the ground-truth
labels of individual teeth and alveolar bones for model training
and performance evaluation, each CBCT scan was manually
annotated and checked by senior raters with rich experience (see
details in Supplementary Fig. 1).

As shown in Fig. 1b, in our experiments, we randomly sampled
70% (i.e., 3172) of the CBCT scans from the internal dataset (CQ-
hospital, HZ-hospital, and SH-hospital) for model training and
validation; the remaining 30% data (i.e., 1359 scans) were used as
the internal testing set. Moreover, to further evaluate how the
learned deep learning models can generalize to the data from
completely unseen centers and patient cohorts, we used the
external dataset collected from 12 dental clinics for independent
testing. To verify the clinical applicability of our AI system in
more detail, we randomly selected 100 CBCT scans from the
external set, and compared the segmentation results produced by
our AI system and expert radiologists. Moreover, we also provide
the data distribution of the abnormalities in the training and
testing dataset. As shown in Supplementary Table 1 in
Supplementary Materials, we can see that the internal testing
set and the training set have similar distributions of dental
abnormalities, as they are randomly sampled from the same
large-scale dataset. In contrast, since the external dataset is
collected from different dental clinics, the distribution of its
dental abnormalities is a little different compared with the
internal set. Notably, some subjects may simultaneously have
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more than one kind of abnormality. Overall, this proof-of-
concept study can fully mimic the heterogeneous environments in
real-world clinical practice.

Segmentation performance. An overview of our AI system for
tooth and alveolar bone segmentation is illustrated in Fig. 2.
Given an input CBCT volume, the framework applies two con-
current branches for tooth and alveolar bone segmentation,
respectively (see details provided in the “Methods” section). The
segmentation accuracy is comprehensively evaluated in terms of
three commonly used metrics, including Dice score, sensitivity,
and average surface distance (ASD) error. Specifically, Dice is
used to measure the spatial overlap between the segmentation
result R and the ground-truth result G, defined as Dice= 2 R\Gj j

Rj jþ Gj j.
The sensitivity represents the ratio of the true positives to true
positives plus false negatives. The distance metric ASD refers to
the ASD of segmentation result R and ground-truth result G.

Table 2 lists segmentation accuracy (in terms of Dice,
sensitivity, and ASD) for each tooth and alveolar bone calculated
on both the internal testing set (1359 CBCT scans from 3 known/
seen centers) and external testing set (407 CBCT scans from 12
unseen centers). It can be observed that, on the internal testing
set, our AI system achieves the average Dice score of 94.1%, the
average sensitivity of 93.9%, and the average ASD error of
0.17 mm in segmenting individual teeth. The accuracy across
different teeth is consistently high, although the performance on
the 3rd molars (i.e., the wisdom teeth) is slightly lower than other
teeth. This is reasonable, as many patients do not have the 3rd

molars. Also, the 3rd molars usually have significant shape
variations, especially on the root area. The accuracy of our AI
system for segmenting alveolar bones is also promising, with the
average Dice score of 94.5% and the ASD error of 0.33 mm on the
internal testing set.

Results on the external testing set can provide additional
information to validate the generalization ability of our AI system
on unseen centers or different cohorts. Specifically, from Table 2
we find that our AI system achieves an average Dice of 92.54%
(tooth) and 93.8% (bone), sensitivity of 92.1% (tooth) and 93.5%
(bone), and ASD error of 0.21 mm (tooth) and 0.40 mm (bone)
on the external dataset. It indicates that the performance on the
external set is only slightly lower than those on the internal
testing set, suggesting high robustness and generalization capacity
of our AI system in handling heterogeneous distributions of
patient data. This is extremely important for an application
developing for different institutions and clinical centers in real-
world clinical practice.

As a qualitative evaluation, we show the representative
segmentation produced by our AI system on both internal and
external testing sets in Fig. 1c, where the individual teeth and
surrounding bones are marked with different colors. We find that,
although the image styles and data distributions vary highly
across different centers and manufacturers, our AI system can
still robustly segment individual teeth and bones to reconstruct
3D model accurately.

In clinical practice, patients seeking dental treatments usually
suffer from various dental problems, e.g., missing teeth, misalign-
ment, and metal implants. Accurate and robust segmentation of

a b

c

Original image Predic�on (2D) Predic�on (2D) Original image Predic�on (2D) Predic�on (2D)

1 2

3 4

CBCT scans
N=4938

Internal set
N=4531

External set
N=407

CQ-Hospital
N=1532

HZ-Hospital
N=1798

SH-Hospital
N=1201

Internal tes�ng set
N=1359

Internal tes�ng set
N=3172

External tes�ng set
N=407

70% 30%

Clinical valida�on
N=100

Intensity

ycneuqerF

Fig. 1 Data information and segmentation results in the multi-center CBCT dataset. a The overall intensity histogram distributions of the CBCT data
collected from different manufacturers. b The CBCT dataset consists of internal set and external set. The internal set collected from three hospitals is
randomly divided into the training dataset and internal testing dataset. All 407 external CBCT scans, collected from 12 dental clinics, are used as external
testing dataset, among which 100 CBCT scans are randomly selected for clinical validation by comparing the performance with expert radiologists.
c Qualitative comparison of tooth and bone segmentation on the four center sets. The original CBCT images are shown in the 1st column, and the
segmentation results in 2D and 3D views are shown in the 2nd and 3rd columns, respectively.
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CBCT images for these patients is essential in the workflow of
digital dentistry. Figure 3 presents the comparison between
segmentation results (in terms of Dice score and sensitivity)
produced by our AI system on healthy subjects and also the
patients with three different dental problems. By regarding
those results on the healthy subjects as the baseline, we can
observe that our AI system can still achieve comparable
performance for the patients with missing and misaligned
teeth, while slightly reduced performance for the patients with
metal implants (i.e., for the CBCT images with metal artifacts).
Also, in Fig. 4, we visualize both tooth and bone segmentation
results on representative CBCT images with dental abnormal-
ities (Fig. 4a–f) and normal CBCT images (Fig. 4g, h). Although
metal artifacts introduced by dental fillings, implants, or metal

crowns greatly change the image intensity distribution (Fig. 4a,
b), our AI system can still robustly segment individual teeth
and bones even with very blurry boundaries. In addition, by
observing example segmentation results for the CBCT images
with missing teeth (Fig. 4c, d) and/or misalignment problems as
shown in Fig. 4e, f, we can see that our AI system still achieves
promising results, even for the extreme case with an impacted
tooth as highlighted by the red box in Fig. 4e.

Ablation study. To validate the effectiveness of each important
component in our AI system, including the skeleton representa-
tion and multi-task learning scheme for tooth segmentation,
and the harr filter transform for bone segmentation, we have

Input image

Bone mask

2D

Final results

ROI extrac�on 
network Skeleton network

Mul�-task tooth 
segmenta�on network

Cascaded bone segmenta�on network

Centroid network Tooth centroid

Tooth skeleton

Tooth root point Tooth boundary Tooth mask

Tooth ROI

3D

ba

c

dTooth ID classifica�on

MLP layesHarr transform

Fig. 2 Overview of our proposed AI system for segmenting individual teeth and alveolar bones from CBCT images. a The input of the system is a 3D
CBCT scan. b The morphology-guided network is designed to segment individual teeth. c The cascaded network is used to extract alveolar bones. d The
outputs of the model include the masks of individual teeth and alveolar bones.

Table 2 Results of the individual teeth and bone segmentation on internal and external testing sets.

Tooth class Internal testing set External testing set

Dice (%) Sen (%) ASD (mm) Dice (%) Sen (%) ASD (mm)

Central incisor 93.9 (79.4–96.2) 94.7 (83.8–96.3) 0.16 (0.09–0.27) 92.6 (63.4–96.9) 92.9 (65.8–97.5) 0.23 (0.12–0.42)
Lateral incisor 93.7 (68.5–96.6) 92.8 (71.9–96.9) 0.17 (0.07–0.35) 92.4 (64.9–97.1) 90.9 (60.2–95.4) 0.21 (0.09–0.39)
Cuspid 95.2 (82.9–97.6) 93.9 (80.3–99.0) 0.14 (0.05–0.21) 94.2 (76.4–97.8) 93.7 (75.9–98.6) 0.17 (0.07–0.28)
1st premolar 95.0 (76.9–97.2) 93.0 (75.3–96.8) 0.15 (0.07–0.32) 93.3 (61.4–96.9) 91.7 (59.8–96.8) 0.18 (0.10–0.35)
2nd premolar 94.9 (72.8–98.0) 94.7 (76.9–97.2) 0.16 (0.07–0.34) 92.9 (70.5–96.7) 90.5 (72.4–95.9) 0.19 (0.08–0.48)
1st molar 94.6 (62.6–97.6) 93.2 (60.8–97.5) 0.18 (0.09–0.41) 92.6 (68.8–97.4) 91.9 (70.6–97.4) 0.24 (0.10–0.41)
2nd molar 93.4 (67.2–98.2) 90.7 (66.8–94.7) 0.19 (0.08–0.38) 91.7 (63.9–97.0) 91.7 (66.7–96.0) 0.23 (0.07–0.56)
3nd molar 91.5 (52.9–95.8) 92.7 (58.9–96.7) 0.21 (0.13–0.72) 91.3 (53.7–96.4) 90.6 (51.0–96.2) 0.28 (0.14–0.94)
Average 94.1 93.9 0.17 92.5 92.1 0.21
Maxillary bone 94.1 (76.9–96.9) 93.5 (74.1–95.8) 0.35 (0.18–0.84) 93.0 (57.9–95.4) 92.8 (49.3–95.4) 0.47 (0.18–0.96)
Mandible bone 94.8 (80.3–97.3) 94.2 (83.0–97.4) 0.29 (0.13–0.77) 94.5 (67.7–97.8) 93.9 (72.5–96.9) 0.33 (0.12–0.76)
Average 94.5 93.8 0.33 93.8 93.5 0.40
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conducted a set of ablation studies shown in Supplementary
Table 2 in the Supplementary Materials. First, for the tooth seg-
mentation task, we train three competing models, i.e., (1) our AI
system (AI), (2) our AI system without skeleton information (AI
(w/o S)), and (3) our AI system without the multi-task learning
scheme (AI (w/o M)). It can be seen that AI (w/o S) and AI (w/o
M) show relatively lower performance in terms of all metrics (e.g.,
Dice score of 2.3 and 1.4% on the internal set, and 1.4 and 1.1%
on external set), demonstrating the effectiveness of the hier-
archical morphological representation for accurate tooth seg-
mentation. Moreover, the multi-task learning scheme with
boundary prediction can greatly reduce the ASD error, especially
on the CBCT images with blurry boundaries (e.g., with metal
artifacts). Next, for the alveolar bone segmentation task, we
compare our AI system with the model without harr filter
enhancement (AI (w/o H)). Our AI system can increase Dice
score by 2.7% on internal testing set, and 2.6% on external testing
set, respectively. The improvements are significant, indicating
enhancing intensity contrast between alveolar bones and soft

tissues to allow the bone segmentation network to learn more
accurate boundaries.

Comparison with other methods. To show the advantage of our
AI system, we conduct three experiments to directly compare our
AI system with several most representative deep-learning-based
tooth segmentation methods, including ToothNet24, MWTNet27,
and CGDNet28. Note that, ToothNet is the first deep-learning-
based method for tooth annotation in an instance-segmentation
fashion, which first localizes each tooth by a 3D bounding box,
followed by the fine-grained delineation. MWTNet is a semantic-
based method for tooth instance segmentation by identifying
boundaries between different teeth. CGDNet detects each tooth’s
center point to guide their delineation, which reports the state-of-
the-art segmentation accuracy. Notably, all these three competing
methods are designed solely for tooth segmentation, as there is no
study in the literature so far for jointly automatic alveolar bone
and tooth instance segmentation.
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Considering that these competing methods are trained and
evaluated with very limited data in their original papers, we
conduct three new experiments under three different scenarios
for comprehensive comparison with our method. Specifically, we
train these competing models, respectively, by using (1) a small-
sized training set (100 CBCT scans), (2) a small-sized training set
with data argumentation techniques (100+ CBCT scans), and (3)
a large-scale training set with 3172 CBCT scans. Corresponding
segmentation results on the external dataset are provided in
Supplementary Table 3 in the Supplementary Materials. From
Supplementary Table 3, we can have two important observations.
First, our AI system consistently outperforms these competing
methods in all three experiments, especially for the case when
using small training set (i.e., 100 scans). These results show the
advance of various strategies we proposed. For example, instead
of simply localizing each tooth by points or bounding boxes as
used in these competing methods, our AI system learns a
hierarchical morphological representation (e.g., tooth skeleton,
tooth boundary, and root apices) for individual teeth often with
varying shapes, and thus can more effectively characterize each
tooth even with blurring boundaries using small training dataset.
Second, for all methods (including our AI system), the data
argumentation techniques (100+) can consistently improve the
segmentation accuracy. However, compared with the large-scale
real-clinical data (3172 CBCT scans), the improvement is not
significant. This further demonstrates the importance of collect-
ing large-scale dataset in clinical practice.

In summary, compared to the previous deep-learning-based
tooth segmentation methods, our AI system has three aspects of
advantage. First, our AI system is fully automatic, while most
existing methods need human intervention (e.g., having to
manually delineate foreground dental ROI) before tooth segmen-
tation. Second, our AI system has the best tooth segmentation
accuracy because of our proposed hierarchical morphological
representation. Third, to the best of our knowledge, our AI
system is the first deep-learning work for joint tooth and alveolar
bone segmentation from CBCT images.

Comparison with expert radiologists. To verify the clinical
applicability of our AI system for fully automatic tooth and
alveolar bone segmentation, we compare its performance with
expert radiologists on 100 CBCT scans randomly selected from
the external set. We enroll two expert radiologists with more than
5 years of professional experience. Note that these two expert
radiologists are not the people for ground-truth label annotation.

The comparison results are summarized in Table 3. It can be
seen that, in terms of segmentation accuracy (e.g., Dice score),
our AI system performs slightly better than both expert
radiologists, with the average Dice improvements of 0.55%
(expert-1) and 0.28% (expert-2) for delineating teeth, and 0.62%
(expert-1) and 0.30% (expert-2) for delineating alveolar bones.
Accordingly, we also compute corresponding p values to validate
whether the improvements are statistically significant. The

statistical significance is defined as 0.05. Specifically, for tooth
segmentation, the paired p values are 2e−5 (expert-1) and 7e−3
(expert-2). And for alveolar bone segmentation, the paired p
values are 1e−3 (expert-1) and 9e−3 (expert-2). All p values are
smaller than 0.05, indicating that the improvements over manual
annotation are statistically significant. Another observation is
worth mentioning that the expert radiologists obtained a lower
accuracy in delineating teeth than alveolar bones (i.e., 0.79% by
expert-1 and 0.84% by expert-2 in terms of Dice score). This is
because teeth are relatively small objects, and neighboring teeth
usually have blurry boundaries, especially at the interface between
upper and lower teeth under a normal bite condition. Also, due to
the above challenge, the segmentation efficiency of expert
radiologists is significantly worse than our AI system. Table 3
shows that the two expert radiologists take 147 and 169 min (on
average) to annotate one CBCT scan, respectively. In contrast,
our AI system can complete the entire delineation process of one
subject within only a couple seconds (i.e., 17 s). Besides
quantitative evaluations, we also show qualitative comparisons
in Fig. 5 to check visual agreement between segmentation results
produced by our AI system and expert radiologists. It can be seen
that the 3D dental models reconstructed by our AI system have
much smoother surfaces compared to those annotated manually
by expert radiologists. These results further highlight the
advantage of conducting segmentation in the 3D space (i.e., by
our AI system) rather than 2D slice-by-slice operations (i.e., by
expert radiologists).

Clinical improvements. Besides direct comparisons with experts
from both aspects of segmentation accuracy and efficiency, we
also validate the clinical utility of our AI system, i.e., whether this
AI system can assist dentists and facilitate clinical workflows of
digital dentistry. To this end, we roughly calculate the segmen-
tation time spent by the two expert radiologists under assistance
from our AI system. Specifically, instead of fully manual seg-
mentation, the expert radiologists first apply our trained AI sys-
tem to produce initial segmentation. Then, they check the initial
results slice-by-slice and perform manual corrections when
necessary, i.e., when the outputs from our AI system are pro-
blematic according to their clinical experience. Therefore, the
overall work time includes the time verifying and updating seg-
mentation results from our AI system.

The corresponding results are summarized in Table 3. Without
assistance from our AI system, the two expert radiologists spend
about 150 min on average to manually delineate one subject. In
contrast, with the assistance of our AI system, the annotation
time is dramatically reduced to less than 5mins on average, which
is ~96.7% reduction in segmentation time. A paired t-test shows

Table 3 Quantitative comparison between our AI system
and two expert radiologists (tested on 100 CBCT scans
randomly selected from external set).

Model Expert-1 Expert-2 AI system

Dice (tooth) (%) 91.9 92.1 92.4
Dice (bone) (%) 92.7 93 93.3
Time (min) 147 160 0.23
Time (min) (with AI assistance) 4.3 4.9 –
Modification scans 12/100 12/100 –

AI Expert-1 Expert-2

Fig. 5 Qualitative segmentation results produced by our AI system and two
expert radiologists.
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statistically significant improvements with P1= 3.4 × 10−13 and
P2= 5.4 × 10−15, with respect to the two expert radiologists,
respectively. Also, it is worth noting that the expert radiologists
accepted most of the fully automatic prediction results produced
by our AI system without any modification, except only 12 out of
the 100 CBCT scans requiring extra-human intervention. For
example, the predicted tooth roots may have a little over- or
under-segmentation. Additional refinements can make the dental
diagnosis or treatments more reliable. Our clinical partners have
confirmed that such performance is fully acceptable for many
clinical and industrial applications, e.g., doctor-patient commu-
nications and treatment planning for orthodontics or dental
implants, indicating the high clinical utility of our AI system.

Discussion
The 3D information of teeth and surrounding alveolar bones is
essential and indispensable in digital dentistry, especially for
orthodontic diagnosis and treatment planning. In this study, we
develop the first clinically applicable deep-learning-based AI
system for fully automatic tooth and alveolar bone segmentation.
We have validated our system in real-world clinical scenarios
with very large internal (i.e., 1359 CBCT scans) and external (i.e.,
407 CBCT scans) datasets, and obtained high accuracy and
applicability as confirmed by various experiments.

One of the key attributes of our AI system is full automation
with good robustness. Most conventional methods5–7 are semi-
automatic, i.e., they typically requiring additional user annotation
to first identify individual teeth before delineating the tooth
boundary (e.g., using level set or graph cut). For example, Gan
et al.7 have developed a hybrid level set based method to segment
both tooth and alveolar bone slice-by-slice semi-automatically.
Note that a starting slice and seed point of each tooth should be
manually selected for the detection of individual tooth regions,
which is time-consuming and laborious in clinical practice.
Recently, many deep learning-based methods24–30 with various
network architectures have been designed. Given a predefined
ROI, most of these learning-based methods can segment teeth
automatically. However, ROIs often have to be located manually
in the existing methods (e.g., ToothNet24 and CGDNet28), thus,
the whole process for teeth segmentation from original CBCT
images is not fully automatic. Instead, our AI system is fully
automatic, and the whole pipeline can be run without any manual
intervention, including the dental ROI localization, tooth seg-
mentation, and alveolar bone segmentation with input of original
CBCT images. To improve model robustness and generalizability,
some existing methods also have attempted to address the chal-
lenging cases with metal artifacts. For example, a dense ASPP
module has been designed in CGDNet28 for this purpose, and
achieved leading performance, but it only tested on a very small
dataset with 8 CBCT scans. Our AI system can more robustly
handle the challenging cases than CGDNet, as demonstrated by
the comparisons in Supplementary Table 3, using either small-
size dataset or large-scale dataset. This is mainly due to the two
proposed complementary strategies for explicitly enhancing the
network learning of tooth geometric shapes in the CBCT images
(especially with metal artifacts or blurry boundaries). First, we
explicitly capture tooth skeleton information to provide rich
geometric guidance for the downstream individual tooth seg-
mentation. Second, we use tooth boundary and root landmark
prediction as an auxiliary task for tooth segmentation, thus
explicitly enhancing the network learning at tooth boundaries
even with limited intensity contrast (e.g., metal artifacts). It is
worth noting that the relationship between teeth and alveolar
bones is critical in clinical practice, especially in orthodontic
treatment, because the tooth root apices cannot penetrate the

surrounding bones during tooth movement. Moreover, we also
introduce a filter-enhanced (i.e., Harr transform) cascaded net-
work for accurate bone segmentation by enhancing intensity
contrasts between alveolar bones and soft tissues. Such combi-
nations of data-driven and knowledge-driven approaches have
demonstrated promising performance in particular tasks, such as
image decomposition33, tissue segmentation34, and depth
estimation35. Hence, our system is fully automatic with good
robustness, which takes as input the original 3D CBCT image and
automatically produces both the tooth and alveolar bone seg-
mentations without any user intervention.

Another important contribution of this study is that we have
conducted a series of experiments and clinical applicability tests
on a large-scale dataset collected from multi-center clinics,
demonstrating that deep learning has great potential in digital
dental dentistry. Previous studies have mostly focused on algo-
rithm modifications and tested on a limited number of single-
center data, without faithful verification of model robustness and
generalization capacity. For example, Cui et al.24 have applied an
instance segmentation method (Mask R-CNN36) from the com-
puter vision community to tooth instance segmentation and
achieved an average Dice score of 93.3% on 8 testing CBCT scans.
However, the performance on the multi-center external dataset
has not been validated, i.e., not tested on the diverse and unseen
data scanned with different image protocols, scanner brands, or
parameters. Recently, the data argumentation techniques have
been widely used to improve model robustness in medical image
analysis37. As shown in Table 3, by applying the data argu-
mentation techniques (e.g., image flip, rotation, random defor-
mation, and conditional generative model38), the segmentation
accuracy of different competing methods indeed can be boosted.
But the improvements are limited compared with the large-scale
dataset collected from real-world clinics. It is mainly because such
a small-sized set of real data, as well as the synthesized data (using
data argumentation methods), cannot completely cover the dra-
matically varying image styles and dentition shape distributions
in clinical practice. And the large-scale, multi-center, and real-
clinical data collected in this study can effectively address this
issue. Specifically, as shown in Fig. 1a, the acquired images pre-
sent large style variations across different centers in terms of
imaging protocols, scanner brands, and/or parameters. In addi-
tion, as reported by the oral health survey39,40, the dentition
distributions (i.e., tooth size) can be a little different across people
from different regions. More importantly, since all the CBCT
images are scanned from patients with dental problems, different
centers may have large different distributions in dental abnorm-
alities, which further increases variations in tooth/bone structures
(i.e., shape or size). The results presented in Supplementary
Table 3 strongly support the observation that a large-scale and
heterogeneous dataset is essential for building a robust and
generalizable deep learning system in clinics. The experimental
observations in Fig. 3 and Table 2 have also shown that our AI
system can produce consistent and accurate segmentation on
both internal and external datasets with various challenging cases
collected from multiple unseen dental clinics. Furthermore,
extensive clinical validations and comparisons with expert radi-
ologists have verified the clinical applicability of our AI system,
especially in greatly reducing human efforts in manual annotation
and inspection of the 3D tooth and alveolar bone segmentations.

In addition, to validate the automation, robustness, and clinical
applicability of our AI system, we also explore the clinical
knowledge embedded in the large-scale CBCT dataset, i.e., the
trajectory of tooth volume and density changes with ages of
participants. It is worth noting that the trajectory curves are
computed from the ground truth annotation, instead of our AI
system prediction, which is more convincing from clinical
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perspectives. The corresponding results are shown in Fig. 6,
where the volume and density of each tooth are quantified at
different age ranges from all collected CBCT scans (i.e., internal
and external datasets). From Fig. 6, we can have a consistent
observation that the volumes of all teeth increase significantly
from Children (0–9 years old) to Youth (10–19 years old), as this
period is the “mixed dentition“ time that children usually lose
their deciduous teeth (smaller in size) and gain permanent adult
teeth. Moreover, the volume of tooth rapidly decreases after 50
years old due to tooth wear or broken, especially for molar teeth.
On the other hand, the trajectories of densities for different teeth
also have consistent patterns, i.e., gradual increase during the
period of 30–80 years old while obvious decrease at 80–89 years
old. These imaging findings are consistent with the existing
clinical knowledge, which has shown that the tooth enamel
changes over time, and it may disappear after 80 years old due to
day-to-day wear and tear of teeth. With the volume and density
changing curves as shown in Fig. 6, an interesting phenomenon
can be observed that there is a peak in the volume trajectory curve
for middle-aged patients. The potential reasons are two-fold.
First, as reported, there is a significant tooth size discrepancy
across people from different regions39,40. And in this study, our
dataset (i.e., internal and external sets) is mainly collected from
three places (i.e., Chongqing, Hangzhou, and Shanghai), where
their tooth size distributions may be slightly different and thus
lead to the peak in the volume trajectory curve for middle-aged
patients. The second reason may be that all the CBCT images are
collected from patients seeking different dental treatments in
hospitals, which may also produce peak value in the volume
trajectory curve. Generally, such studies on tooth development
trajectories could facilitate a better understanding of dental dis-
eases and healthcare. In the future, we plan to collect larger data
from more centers, and calculate the tooth volume and intensity
trajectories with different scenarios, including inter- and intra-
different regions, and before and after dental treatments.

Although this work has achieved overall promising segmen-
tation results, it still has flaws in reconstructing the detailed
surfaces of the tooth crown due to the limited resolution of CBCT
images (i.e., 0.2–0.6 mm). In clinics, the 3D dental model scanned
by the intra-oral scanner is often acquired to represent the tooth
crown surface with much higher resolution (0.01–0.02 mm),
which is helpful in tooth occlusion analysis but without tooth root
information. Thus, it is valuable to leverage the intra-oral scans to
improve the tooth crown shapes reconstructed from CBCT
images. In future work, as a post-processing step of our current
method, we will collect some paired intra-oral scans and combine
it with the CBCT segmentation results to build a complete 3D
tooth and alveolar bone model with a high-resolution tooth
crown shape. This will lead to a more accurate AI system for
digital dentistry.

In conclusion, this study proposes a fully automatic, accurate,
robust, and most importantly, clinically applicable AI system for

3D tooth and alveolar bone segmentation from CBCT images,
which has been extensively validated on the large-scale multi-
center dataset of dental CBCT images. It also suggests that
combing artificial intelligence and dental medicine would lead to
promising changes in future digital dentistry.

Method
Image pre-processing. This study was approved by the Research Ethics Com-
mittee in Shanghai Ninth People’s Hospital and Stomatological Hospital of
Chongqing Medical University. Due to the retrospective nature of this study, the
informed consent was waived by the relevant IRB. Before feeding a 3D CBCT
image into the deep learning network, we pre-process it with the following steps.
First, as the physical resolution of our collected CBCT images varies from 0.2 to
1.0 mm, all CBCT images are normalized to an isotropic resolution of
0.4 × 0.4 × 0.4 mm3, considering the balance between computational efficiency and
segmentation accuracy. For example, if the resolution is higher than 0.4 mm,
down-sampling is introduced; otherwise, up-sampling is applied on the 3D CBCT
images. Additionally, following the standard protocol of image processing in deep
learning, the voxel-wise intensities are normalized to the interval [0, 1]. Moreover,
to reduce the effect of extreme values, especially at the area of metal artifacts, we
clip intensity values of each CBCT scan to [0, 2500] before intensity normalization.

Model implementation. Figure 2 presents the overview of our deep-learning-based
AI system, including a hierarchical morphology-guided network to segment indi-
vidual teeth and a filter-enhanced network to extract alveolar bony structures from
the input CBCT images. We elaborate each of these two networks in this sub-
section, and the detailed network architectures are shown in Supplementary
Materials (Supplementary Figs. 2–5).

Considering the field-of-view in 3D CBCT image usually captures the entire
maxillofacial structures, the dental area is relatively small. In this sense, we first
apply an encoder-decoder network to automatically segment the foreground tooth
for dental area localization. Note that it is a binary segmentation task without
separating different teeth. As shown in Fig. 2, we directly employ V-Net41 in this
stage to obtain the ROI. Specifically, due to the limitation of GPU memory, we
randomly crop patches of size 256 × 256 × 256 from the CBCT image as inputs. In
the network training stage, the binary cross-entropy loss is utilized to supervise the
probability map outputted by the last convolutional layer.

After obtaining the dental ROI, we use our previously-developed hierarchical
morphology-guided network30 to make automatic and accurate segmentation of
individual teeth. This a two-stage network first detects each tooth and represents it
by the predicted skeleton, which can stably distinguish each tooth and capture the
complex geometric structures. Then, based on the output of the first step, a multi-
task learning network for single tooth segmentation is introduced to predict each
tooth’s volumetric mask by simultaneously regressing the corresponding tooth
apices and boundaries. The design of the method is natural, as it can properly
represent and segment each tooth from background tissues, especially at the tooth
root area where accurate segmentation is critical in orthodontics to ensure that the
tooth root cannot penetrate the surrounding bone during tooth movements. The
overview network architecture is shown in Fig. 2. Specifically, the centroid and
skeleton detection networks in the first step are all V-Net41 structures with two
output branches. One is the 3D offset map (i.e., 3D vector) pointing to the
corresponding tooth centroid points or skeleton lines, and the other branch
outputs a binary tooth segmentation mask to filter out background voxels in the 3D
offset maps. With the predicted tooth centroid points and skeletons, a fast
clustering method42 is first implemented to distinguish each tooth based on the
spatial centroid position, and simultaneously recognize tooth numbers. Then, each
detected tooth can be represented by its skeleton. In the second step of single tooth
segmentation, the three-channel inputs to the multi-task tooth segmentation
network are the patches cropped from the tooth centroid map, the skeleton map,
and the tooth ROI images, respectively. The size of each channel is 96 × 96 × 96. As
shown in Fig. 2, a V-Net network architecture with multiple task-specific outputs is
used to predict the mask of each individual tooth. Note that, in the multi-task tooth
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Fig. 6 The changing curves of tooth volumes and intensities over different ages of patients.
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segmentation network, the encoder part is followed by a max-pooling layer and
three fully-connected layers to identify the category of each input tooth patch,
based on the FDI World Dental Federation notation system43. In the training stage,
we respectively adopt binary cross-entropy loss to supervise the tooth
segmentation, and another L2 loss to supervise the 3D offset, tooth boundary, and
apice prediction.

The alveolar bone segmentation framework is developed based on a boundary-
enhanced neural network, which aims to directly extract midface and mandible
bones from input 3D CBCT image. Specifically, as shown in Fig. 2, we first utilize
harr transform44 to process the CBCT image, where the intensity contrast around
bone boundaries can be significantly enhanced. Then, with the filtered image, we
combine it with the original CBCT image, and feed them into a cascaded V-Net41.
The input of the original and filtered images are the cropped patches with a
dimension of 256 × 256 × 256 considering the limitation the GPU memory
limitation. The output of the network is a 3-channel mask, with the same size as
the input patch, indicating probabilities of each voxel belonging to the
background, midface bone, and mandible bone, respectively. To train the network,
we adopt the cross-entropy loss to supervise the alveolar bone segmentation. Note
that, in the inference time, a post-processing step is employed to merge the
predicted bone and tooth masks. For example, if a voxel is simultaneously
predicted as bone and tooth, we will compare the probabilities predicted by the
bone and tooth segmentation networks, and choose the label with a larger
probability as the final prediction.

Training details. The framework was implemented in PyTorch library45, using the
Adam optimizer to minimize the loss functions and to optimize network para-
meters by back propagation. A learning rate of 0.001 and a mini batch size of 1
were used in the tooth and alveolar bone segmentation network. At the end of each
training epoch, we computed the loss on the validation dataset to determine the
network convergence. If the model performance on the validation dataset remained
unchanged for 5 epochs, we considered that the training process was converged
and could be stopped. All deep neural networks were trained with one Nvidia Tesla
V100 GPU.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The authors declare that partial data (i.e., 50 raw data of CBCT scans collected from
dental clinics) will be released to support the results in this study (link: https://
pan.baidu.com/s/1LdyUA2QZvmU6ncXKl_bDTw, password:1234), with permission
from respective data centers. The full datasets are protected because of privacy issues and
regulation policies in hospitals. All requests about the software testing, comparison and
evaluation can be sent to the first author (Z.C., Email: cuizm.neu.edu@gmail.com). All
requests will be promptly reviewed within 15 working days.

Code availability
The code of this system would be accessible (https://pan.baidu.com/s/
194DfSPbgi2vTIVsRa6fbmA, password:1234). It should be used for academic
research only.
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