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Abstract. Automatic and accurate segmentation of individual teeth,
i.e., tooth instance segmentation, from CBCT images is an essential step
for computer-aided dentistry. Previous works typically overlooked rich
morphological features of teeth, such as tooth root apices, critical for
successful treatment outcomes. This paper presents a two-stage learning-
based framework that explicitly leverages the comprehensive geometric
guidance provided by a hierarchical tooth morphological representation
for tooth instance segmentation. Given a 3D input CBCT image, our
method first learns to extract the tooth centroids and skeletons for iden-
tifying each tooth’s rough position and topological structures, respec-
tively. Based on the outputs of the first step, a multi-task learning mech-
anism is further designed to estimate each tooth’s volumetric mask by
simultaneously regressing boundary and root apices as auxiliary tasks.
Extensive evaluations, ablation studies, and comparisons with existing
methods show that our approach achieved state-of-the-art segmentation
performance, especially around the challenging dental parts (i.e., tooth
roots and boundaries). These results suggest the potential applicability
of our framework in real-world clinical scenarios.

1 Introduction

Computer-aided design (CAD) has been widely used in digital dentistry for
diagnosis, restoration, and orthodontic treatment planning. In these processes,
3D tooth models, typically segmented from cone beam computed tomography
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Fig. 1. The first row shows three typical examples, including (a) teeth with large shape
variations; (b) touching boundaries of maxillary and mandibular teeth during close bite;
(c) blurred signals between tooth roots and the surrounding alveolar bones. The second
row illustrates different components of the hierarchical morphological representations,
including the points (i.e., the tooth centroid (d) and the root landmarks at root apices
(f)), the tooth skeleton (e), and the tooth boundary surface (g).

(CBCT) images [4,5], are essential to assist dentists in extracting, implanting, or
rearranging teeth. In clinical practice, dentists need to manually label each tooth
slice-by-slice from the CBCT images, which is laborious and time-consuming,
and also highly depends on an operator’s experience. Thus, it is practically
demanded of accurate and fully automatic methods to segment individual teeth
from dental CBCT images.

However, automatic segmentation of individual teeth is still a challenging
task as teeth exhibit large variations in their geometry. For example, maxillary
molars usually have three roots, while mandibular molars usually have two roots
[8] (see Fig. 1(a)). Beyond the general rules, special cases where molars have one
root can also be found (Fig. 1(a)) and such disparities are fairly commonplace
in the real-world clinics. Even state-of-the-art learning-based methods [4,5,14]
often fail to handle such complicated cases. This is mainly because such methods
employ only simple representations (e.g., the tooth centroid or the bounding box)
for teeth and thus cannot capture detailed shape variations in each tooth. This
is even worse at the regions where image contrast is low, such as the common
boundary of touching teeth during close bite (Fig. 1(b)) and the interface between
tooth roots and their surrounding alveolar bone (Fig. 1(c)). Without any prior
knowledge of the tooth structure, either traditional methods [1,2,6,7,9,11,15]
or learning-based networks [4,5,14] cannot properly segment the tooth from the
background tissue at these regions, although the tooth root information is criti-
cal in orthodontic treatment to ensure apices cannot penetrate the surrounding
alveolar bone during tooth movement.
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In this paper, we propose a hierarchical morphological representation for cap-
turing the complicated tooth shapes and important tooth features. Specifically,
this hierarchical morphological representation consists of the tooth centroid and
root apices (i.e., points), skeleton, boundary surface, and volume (Fig. 1(d)–
(g), (a)). Based on this hierarchical representation, we design a coarse-to-fine
learning-based framework for automatic and accurate tooth instance segmen-
tation. Given a 3D input CBCT image, to capture the positions and varying
topological structures of all individual teeth, especially at the multi-root areas,
a neural network at the 1st-stage (at the coarse level) is designed to predict tooth
centroids and skeletons, respectively. Then, a multi-task network is further pro-
posed at the 2nd-stage to simultaneously predict the detailed geometric features,
i.e., root landmarks (or apices), boundary surface, and volumetric mask of each
tooth using the tooth skeletons estimated at the 1st-stage as guidance. Since
the three tasks are intrinsically related from a geometric perspective, regressing
the root landmarks and boundary surface of each tooth can intuitively boost the
segmentation performance at the important and challenging regions (e.g., the
tooth boundary and root apices). The performance of our method was evaluated
through extensive experiments on a CBCT dataset collected from real-world
clinics. The corresponding results showed that our method significantly outper-
formed other state-of-the-art approaches, suggesting the efficacy of the hierar-
chical morphological representations designed in this study for tooth instance
segmentation.

2 Methods

The proposed framework consists of two stages. At the 1st-stage, a prediction
network is designed to extract the coarse-level morphological representations,
i.e., the centroid and skeleton of each tooth, to represent the tooth structure.
At the 2nd-stage, a segmentation network with the coarse-level morphological
guidance (the tooth skeleton) is trained with a multi-task learning mechanism to
generate a detailed tooth volume, boundary, and root landmarks. The schematic
diagrams of these two steps are shown in Figs. 2 and 3, respectively, with the
details elaborated below.

2.1 Tooth Centroid and Skeleton Extraction Network

As the centroid and skeleton of a tooth define its spatial location and topological
structure, respectively, the network in this step aims to achieve the following
goals: 1) localize individual teeth by identifying their centroids, and then 2)
capture their topological structures by predicting their skeletons.

Given the 3D input CBCT image I, two sub-networks are designed to this
end, as shown in Fig. 3. Each sub-network contains two output branches to pro-
duce a binary segmentation map B and a 3D offset map O. Specifically, the
binary segmentation map B indicates whether a voxel of the input CBCT image
belongs to a foreground tooth object or the background tissue (denoted as Bc
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Fig. 2. The pipeline of our 1st-stage network for tooth skeleton extraction. The CBCT
scan is first fed into both the centroid network and the skeleton network to generate
the offsets and binary maps, respectively. Then, the tooth centroids and skeletons are
detected and predicted by the later steps (dotted lines).

and Bs of the centroid sub-network and the skeleton sub-network, respectively).
The 3D offset map O indicates the 3D vector pointing from each foreground
voxel to its target point. Here, for each voxel, its target point in centroid offset
map Oc refers to a vector pointing to the centroid of the corresponding tooth,
while in skeleton offset map Os the target point is defined as a vector pointing
to the nearest point on the skeleton of the corresponding tooth.

With the outputs of the two sub-networks, we detect the tooth centroids
and skeletons as follows. First, the common binary map Bcs is produced by
the element-wise product of Bc and Bs, which masks out the foreground voxels
shared by both centroid and skeleton offsets. Then, we generate a tooth centroid
density map Hc by counting the frequency of a voxel being pointed by other
voxels according to the 3D centroid offset map. Finally, we adopt a fast search
clustering method [13] to localize the peaks in Hc as the predicted tooth cen-
troids, denoted as Tc. The rationale is that the clustering centers usually have
relatively high density values (i.e., frequency) and large distance to the nearest
point with a higher density value, defined as:

Tc = (Hi
c > δ) ∩ (DT i

c > λ), (1)

where DT i
c refers to the distance between voxel i and its nearest voxel with

higher density value than Hi
c. The scalars δ = 20 and λ = 10 are the density

and distance thresholds, respectively. Moreover, we assign each foreground voxel
in Bcs with different instance labels based on the minimum distance from its
predicted candidate tooth centroid to the clustered tooth centroids in Tc.

Although a tooth centroid is stable to distinguish and localize a tooth, a
single point is insufficient to capture its geometric and topological properties,
compared to the skeletal representation. To obtain the tooth skeleton, we add
the skeleton offsets on the coordinates of corresponding foreground voxels in Bcs.
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Fig. 3. The pipeline of our 2nd-stage multi-task network for tooth instance segmenta-
tion guided by skeletons. The inputs are the cropped input image and skeleton patches
cropped from the 3D input image and tooth skeleton label map, and the outputs are
the tooth segmentation volume, boundary, and root landmarks.

After frequency counting, the skeleton density map Hl is obtained in the same
process as the generation of Hc. Finally, we filter voxels in Hl with the lower
frequency to produce the target tooth skeleton map. Notably, as the foreground
voxels already have the instance labels after the centroid clustering, we can
generate the instance-level tooth skeleton label map Ls in a straightforward
manner, as shown in Fig. 3.

The two sub-networks are trained independently with the same loss functions.

LCS = Lb
seg + ηLsmoothL1

reg , (2)

where η is the balancing weight empirically set as 10 in our experiments. Specif-
ically, the smooth L1 loss is employed to calculate the offset regression error
(LsmoothL1

reg ) on the voxels belonging to tooth objects. And the binary cross-
entropy loss is utilized to compute the binary segmentation error (Lb

seg).

2.2 Multi-task Learning for Tooth Segmentation

Guided by the instance-level tooth skeleton label map Ls, we further extract
individual teeth. To improve the segmentation accuracy, especially near the tooth
boundary and root areas, we introduce a multi-task learning mechanism that can
efficiently employ the intrinsic relatedness between the tooth volume, boundary,
and root landmarks.

To train the multi-task learning network, we process the 3D CBCT image I
and tooth skeleton label map Ls at a finer scale where individual tooth patches
are extracted and processed. In Step one, we select a tooth skeleton instance
and crop two patches (with the same size, and centered at the mass of the
skeleton) from the original image I (the image patch) and the skeleton instance
label map Ls, respectively. In Step two, the selected tooth skeleton instance is
further converted to a Gaussian map centered at the skeleton voxels with a small
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standard deviation δ1 = 3 voxel-size, serving as one of the inputs (the skeleton
patch). As shown in Fig. 3, the skeleton patch is concatenated with the original
image patch, yielding a two-channel input of the tooth segmentation network.

Using the two-channel input, we design the segmentation network by lever-
aging a multi-task learning mechanism, i.e., simultaneously predicting the tooth
volume, boundary, and corresponding root landmarks. Figure 3 presents an
overview of the network that consists of a shared encoder (E) and three task-
specific decoders (Ds, Db and Dl) with the skip connections combining features
of different levels. The three individual branches output the tooth segmentation,
boundary, and root landmarks, respectively. Notably, each tooth’s ground-truth
boundary and root landmark are defined as the 3D Gaussian heatmaps centered
at the surface and point location with a standard deviation δ2 set as 3 voxel-size
in our experiments. The loss function LMT of this multi-task network is defined
as:

LMT = Lseg + λ(Lb + Ll), (3)

where Lseg, Lb and Ll refer to the tooth volume segmentation, boundary, and
landmark prediction losses, respectively. For Lseg, we combine the Dice loss and
binary cross-entropy loss in our experiment, while for Lb and Ll, we use the
L2 error. The hyper-parameter λ is empirically fixed as 0.2 to balance the loss
terms.

2.3 Implementation Details

We employed 3D V-Net [12] as the network backbone of our two-stage framework.
All CBCT images were converted to have the same input size of 256× 256× 256
in the 1st-stage. The cropped patch size of the 2nd-stage was set as 96× 96× 96
to ensure that the whole foreground tooth object is included. The framework
was implemented in PyTorch, which was trained using Adam optimizer with
a fixed learning rate of 1e−4. The networks were trained in 50K iterations in
both two stages. Generally, the training time was around 5 h (1st-stage) and 8 h
(2nd-stage) on a Linux server with one Nvidia GeForce 1080Ti GPU.

3 Experimental Results

3.1 Dataset and Evaluation Metrics

We have extensively evaluated the proposed framework on 100 CBCT scans col-
lected from patients before or after orthodontic treatments in dental clinics. The
dataset contains many abnormal cases with teeth crowding, missing or maloc-
clusion problems. The resolution of the dataset is 0.4 mm. We manually crop the
tooth area on the 3D CBCT image, resize it to 256×256×256, and then normal-
ize the CBCT image intensity to the range of [0, 1]. To obtain the ground truth,
the segmentation labels and tooth root landmarks are manually annotated by
dentists. The corresponding tooth skeletons and boundaries are generated using
morphological operations [10] based on the annotated segmentation labels, and
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Fig. 4. Typical results of the hierarchical tooth morphological representation. From
left to right: 3D segmentation results, predicted tooth centroids, skeletons, root apices,
and boundaries. The last four columns are the partial results of the first column within
the red boxes. (Color figure online)

the tooth centroids are directly computed based on the labelled mask. To train
the network, the dataset is randomly split into three subsets, i.e., 50 scans for
training, 10 scans for validation, and the remaining 40 scans for testing.

To quantitatively evaluate the performance of our framework, we employ
different metrics to measure the tooth detection and segmentation accuracy.
Specifically, we measure the tooth detection accuracy (DA) by DA = |GT

⋂
P |

|P | ,
where GT and P refer to two sets of the ground-truth and the predicted teeth.
For the tooth segmentation, four metrics, including Dice, Jaccard, the average
surface distance (ASD), and Hausdorff distance (HD), are utilized to evaluate
the performance. Since the Hausdorff distance is the maximum of the minimum
distances between the predicted and the ground-truth tooth surfaces, it is the
key metric to especially measure the segmentation error around the tooth root
area with only a tiny percentage of foreground voxels.

3.2 Evaluation and Comparison

We conduct extensive experiments to demonstrate the effectiveness of our tooth
instance segmentation framework guided by hierarchical morphological compo-
nents, including skeleton representation, and multi-task learning for joint pre-
diction of tooth boundary and root landmarks. In Table 1, we present segmen-
tation results of four configurations: (1) we build our baseline network (bNet)
by directly utilizing the tooth centroid to detect and represent each tooth in the
1st-stage network, and also a single-task segmentation network without tooth
boundary and root landmark predictions in the 2nd-stage network; (2) we add
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Fig. 5. The qualitative comparison of tooth segmentation with (c) or without (b) tooth
skeleton representation. bNet-S achieves better results especially near the tooth root
area highlighted by red boxes and arrows, compared to the ground truth (a). (Color
figure online)

Table 1. Quantitative results of ablation analysis of different morphological compo-
nents.

Methods Dice [%] Jaccard [%] ASD [mm] HD [mm]

bNet 92.1 ± 1.5 84.7 ± 2.4 0.33 ± 0.10 2.42 ± 0.88

bNet-S 93.1 ± 1.1 85.3 ± 1.7 0.31 ± 0.05 2.30 ± 0.77

bNet-S-L 94.3 ± 0.6 88.4 ± 1.0 0.26 ± 0.02 1.63 ± 0.45

FullNet 94.8±0.4 89.1±0.9 0.18±0.02 1.52±0.28

only one tooth morphological information, i.e., the tooth skeleton, to the base-
line network to better represent each tooth object, which is denoted as bNet-S;
(3) compared to bNet-S, we add the tooth root landmark detection as a separate
branch in the 2nd-stage network for multi-task learning, denoted as bNet-S-L;
(4) we further argument bNet-S-L with tooth boundary prediction branch in our
2nd-stage network as the final network (FullNet). Note that all of the four con-
figurations utilize the tooth centroid point to detect the tooth object in the 3D
CBCT image, thus the detection accuracy is the same and not listed in Table 1.

Benefits of Tooth Skeleton Representation. Compared with the tooth
centroid, the tooth skeleton provides richer and more faithful geometric and
topological information to guide the subsequent tooth segmentation, especially
for handling the molars with multi-roots. To validate its effectiveness, we add
the tooth skeleton detection component (bNet-S) to the baseline network (bNet)
in the 1st-stage, and show the quantitative results in Table 1. It can be seen
that bNet-S consistently improves the segmentation performance in terms of all
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L-S-teNb)c(S-teNb)b(TG)a(

Fig. 6. The qualitative comparison of tooth segmentation with (c) or without (b) tooth
root landmark detection branch. Compared to the ground truth (a), bNet-S-L avoids
under- or over-segmentation around the tooth root apices highlighted by red boxes and
arrows. (Color figure online)

metrics (e.g., 1.0% Dice improvement and 0.02 mm ASD improvement, respec-
tively). Additionally, a typical visual comparison is shown in Fig. 5, which indi-
cates that, with the guidance of tooth skeleton, the 2nd-stage segmentation
network can accurately separate different roots of a molar. This demonstrates
that the tooth skeleton, with clear tooth shape information, brings significant
benefits to capture complicated tooth shapes.

Benefits of Tooth Root Landmark Detection. In our 2nd-stage network,
instead of only generating the segmentation mask, bNet-S-L adds another branch
to predict the tooth root landmarks by a multi-task learning mechanism. As
shown in Table 1, compared with bNet-S, the Hausdorff distance of bNet-S-L
significantly drops from 2.30 mm to 1.63 mm. Note that the HD metric measures
the maximum of the minimum surface distances between the ground-truth and
predicted tooth surfaces, such that the under- or over-segmentation near the
tooth root apices usually leads to the large error. This indicates the multi-task
learning of tooth segmentation prediction and landmark detection assists the
network to capture the intrinsic relatedness from a geometric perspective and
then benefits the segmentation task. To further analyze the effectiveness, we
also provide a visual example in Fig. 6, where bNet-S-L efficiently addresses the
under- or over-segmentation problem of the tooth roots (highlighted by the red
boxes) even with limited intensity contrast.

Benefits of Tooth Boundary Prediction. In our FullNet, a third branch,
tooth boundary prediction, is added in the 2nd-stage network, which encour-
ages the network to pay more attention to the tooth boundary area with lim-
ited intensity contrast. Statistically, the FullNet obtains the best segmentation
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Fig. 7. The qualitative comparison of tooth segmentation with (c) or without (b) tooth
boundary prediction branch. Compared to the ground truth (a), FullNet produces more
accurate segmentation results especially on the boundaries with metal-artifacts.

Table 2. Quantitative comparison with the state-of-the-art methods in terms of the
segmentation and detection accuracy.

Methods Dice [%] Jaccard [%] ASD [mm] HD [mm] DA [%]

MWTNet [3] 89.6 ± 1.3 82.5 ± 1.9 0.36 ± 0.14 4.82 ± 1.68 98.1 ± 0.8

ToothNet [5] 91.6 ± 1.4 84.2 ± 1.8 0.30 ± 0.11 2.82 ± 1.02 98.6 ± 1.1

CGDNet [14] 92.5 ± 1.1 85.2 ± 1.6 0.27 ± 0.03 2.21 ± 0.69 98.9 ± 1.5

Ours 94.8±0.4 89.1±0.9 0.18±0.02 1.52±0.28 99.7±0.6

performance and boosts the average Dice score and the ASD error to 94.8% and
0.18 mm, respectively. The qualitative results in Fig. 7 also show that the FullNet
can segment more accurate tooth boundaries even with metal artifacts in CBCT
images. More representative segmentation results of the FullNet are presented
in Fig. 4 and Fig. 8.

3.3 Comparison with the State-of-the-Art Methods

We implement and compare our framework with several state-of-the-art deep
learning based tooth segmentation methods, including the region proposal based
network (ToothNet) [5], the center-guided network (CGDNet) [14], and the
semantic-based method (MWTNet) [3]. Note that we utilized the same net-
work backbone (V-Net) in all methods for fair comparison. As shown in Table 2,
compared with MWTNet [3] that directly utilizes tooth boundaries to simulta-
neously detect and segment individual teeth in a single step, our method leads to
remarkable improvement of 5.2% Dice score and 3.30 mm HD error, demonstrat-
ing the advantage of the two-stage detect-then-segment framework. Although
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Fig. 8. The visual comparison of tooth segmentation results by four different methods.
Two typical examples are presented, each being shown by two rows with 2D segmen-
tation masks and corresponding 3D reconstruction results, respectively.

ToothNet [5] is a two-stage network, it only utilizes bounding boxes to represent
individual teeth and our method still outperforms it in terms of segmentation
and detection performances by a large margin. At last, it is also observed that
our approach consistently achieves higher accuracy than CGDNet [14], which
achieves the state-of-the-art performance in this specific task. Particularly, the
segmentation accuracy (Dice) is increased from 92.5% to 94.8%, and the detec-
tion accuracy (DA) is improved from 98.9% to 99.7%. It is worth noting that
all these competing methods pay little attention to the segmentation around
tooth root apices with limited intensity contrast, which usually leads to under-
or over-segmentation of the tooth roots and a higher HD error, even if the root
information is an important consideration in orthodontic treatment.

To further demonstrate the advantage of our method, we provide a quanti-
tative comparison of two typical examples in Fig. 8. It can be found that the
segmentation results generated by our approach (in the last column) match bet-
ter with the ground truth (in the 1st column), especially near the tooth root
apices and occlusion planes with blurred boundary signals. Notably, MWTNet
(the 2nd column) is more likely to lead to failure in tooth separation. For exam-
ple, two incisors are regarded as the same object in the 1st case, and a cuspid
is broken into two parts in the 2nd case. This shows that the tooth boundaries
alone are not stable signals for segmenting adjacent teeth due to limited inten-
sity contrast between these teeth. Besides, ToothNet [5] (the 3nd column) and
CDGNet [14] (the 4th column), respectively representing each tooth by a bound-
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ing box or a center point, produce lots of artifacts near the tooth boundary and
root areas, since most tooth topological features are overlooked by the simple
representation of the bounding box or the center point. The visual results shown
in Fig. 8 are consistent with the quantitative comparison, indicating the effec-
tiveness and advantages of the hierarchical morphology-guided tooth instance
segmentation framework.

4 Conclusion

In this paper, we present a novel tooth instance segmentation network from
CBCT images guided by the hierarchical morphological representations of each
tooth, including its centroid and root landmarks at apices (i.e., points), skele-
ton, boundary surface, and volumetric mask. Specifically, the tooth centroid and
skeleton are first utilized to detect and represent each tooth. Then, a multi-task
learning mechanism is presented to achieve high segmentation accuracy espe-
cially around tooth boundaries and tooth root apices. Comprehensive experi-
ments have validated the effectiveness of our method, showing it can outperform
the state-of-the-art methods. This gives the potential of our method to be widely
used in the real-world clinics.
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