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a b s t r a c t

Digitally synthesizing scaffold-like materials with complex structures, e.g., bones or metal foam, is a
fundamental yet challenging task in tissue engineering and other biomedical applications, because it
is difficult to generate synthesized results with equal visual complexity, strong spatial coherence, and
similar statistical metrics. To handle these challenges, we present ScaffoldGAN, an efficient end-to-end
framework based on generative adversarial networks (GANs) for synthesizing three-dimensional (3D)
materials with complex internal structures resembling the given exemplar. Specifically, we propose
a novel structural loss to enforce strong spatial coherence in the synthesized results by leveraging
the deep features learned by our networks. To demonstrate the effectiveness of our model and the
proposed structural loss term, we collected example data containing various structural complexities,
covering two categories of materials, i.e., bones and metal foams. Extensive comparative experiments
on these collected data showed that our method outperforms state-of-the-art methods, producing
synthesized results with better visual quality and desirable statistical metrics. The ablation study
proves the structural loss is the main contributor to the performance gain, validating our design choice.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Digital synthesis of scaffold-like materials with complex struc-
ures is a fundamental yet challenging task and is significant for
he design and exploration of the cellular materials for biomedical
pplications such as tissue engineering. Taking the bone scaffold
ynthesis as an example, a fundamental requirement is that the
ynthesized scaffold should resemble the original bone as much
s possible in order to provide a similar biological environment
nd mechanical support for bone regeneration [1]. Although re-
ent computational tools [2–4] have facilitated this task, digital
ynthesis of desired scaffolds is still unsolved and faces two main
hallenges: enforcing spatial coherence observed in the material
xemplar and maintaining statistical metrics to be similar to tho-
e of the exemplar.
Some attempts have been made to handle the problem of bone

caffold synthesis. Conventional approaches [1,3,5] for designing
one scaffolds mimic macro-scale properties of materials with
nterconnected and periodical pores uniformly distributed in a
rescribed volume. Procedural methods [6,7] based on random
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noise sampling are developed to generate stochastic microstruc-
tures. Parametric texture methods [8] approach this problem by
finding a global statistical descriptor that characterizes the given
texture exemplars. However, all these previous approaches could
not fully capture the intricate spatial coherence and fine-grained
details of example materials to be replicated.

To address the first challenge, one may consider employing
example-based texture synthesis approach [9–13] to generate
large-scale, scaffold-like structures by taking a small piece of it
as an exemplar. Zhang et al. [14] extended previous works to
directly use 3D exemplars instead of multiple 2D slices, which
achieved better synthesized results than its 2D counterpart. While
the visual similarity between the reference and synthesized data
may be acceptable, we observed in our experiments that these
methods tend to generate results with obvious artifacts, such as
repeated patterns and disconnected branches. This is due to the
fact that these methods match a local patch of the synthesized
result and that of the exemplar to enforce such visual similarity,
losing a global control over the synthesis process. To overcome
the locality nature of the patch-match idea one may enlarge the
patch size for matching, but this cubic expansion could soon bec-
ome computationally intractable.

While producing visually similar results is important, another
critical challenge to be tackled is to ensure that the statistical
metrics of the generated results are close to those of the ex-

emplar. In the field of material sciences, widely-used statistical
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easurements are porosity [15] and two-point correlation func-
ion [16], each indicating the spatial distribution and coherence
f materials, respectively. Many attempts have been made to
xtract parametric models (or textons) to encode visual-related
tatistics relying on engineered features for texture synthesis
see for example [9,11]). But features encoding morphological
tatistics are hard to be manually crafted. In line with this idea
ut using deep features, the framework of generative adversarial
etworks (GANs) is thus a reasonable baseline for our task, be-
ause it is designed to model the data distribution during training
nd output a synthesized result similar to the samples from the
raining dataset.

Inspired by the success of GANs and relevant deep learning
echniques in image synthesis [17–19] and 3D modeling [20,21],
e propose ScaffoldGAN, an end-to-end generative adversarial
etworks based solution, to address the above major challenges
or synthesis of scaffold materials with complex structures. Our
odel is trained on volumetric samples extracted from a large
aterial exemplar acquired via CT scanning, and finally outputs
ynthesized results with strong similarity to the exemplar in both
isual and statistical senses (Fig. 1). Specifically, we introduce a
ovel structural loss term to mimics the patch matching scheme.
owever, comparing to the aforementioned texture synthesis
ethods that perform patch matching in the 2D/3D image do-
ain, our design of the structural loss leverages the convolutional

eatures during the patch matching stage in order to overcome
he locality nature of previous methods. This is made possible
ecause convolutional features at different convolution layers
mbed information of different scales as the receptive fields of
he convolution enlarge when the layers get deeper. Therefore,
nforcing the similarity between convolutional features allows
eproducing strong spatial coherence at different scales observed
n exemplars. The adversary between the generation and dis-
rimination networks also enforces our synthesized results to
losely resemble the samples from the training dataset, and thus
mplicitly ensures desirable statistics for our targeted applications.

We extensively evaluated our results through qualitative and
quantitative analyses. A bone dataset and a metal foam dataset
(morphologically similar to trabecular bones) acquired via micro-
CT were used to demonstrate and validate our method in scaffold
materials synthesis. Experiments on these datasets show that
our method outperforms conventional example-based methods
by far and obtains better statistical metrics comparing to our
baseline model 3D-GAN [20]. We also tested our method on the
ICL dataset [22] (with four stone exemplars), showing that our
method also produces state-of-the-art results and indicating its
applicability. The ablation study is presented at last to validate
our design choices.

Our contributions are summarized as follows:
(1) ScaffoldGAN, a novel end-to-end generative adversarial

network is proposed for the synthesis of 3D scaffold shape, which
can efficiently produce high-quality synthesized results with in-
tricate inner structures, while maintaining strong spatial coher-
ence and similar statistical metrics to exemplars.

(2) A new structural loss term is designed to enforce strong
spatial coherence of synthesized results by considering deep fea-
tures similarity in the network.

(3) Training datasets (i.e., bones and metal foams) are collected
to facilitate future studies in both computer vision and biomedical
engineering.

2. Related work

2.1. Scaffolds structure design

Bone scaffold design is one of the primary application for
porous material synthesis. Scaffolds should be made of complex
2

internal structures to resemble the original bones to provide a
similar biological environment and mechanical support for tis-
sue repair [5]. Recent advances in digital modeling and tomo-
graphic reconstruction provide engineers a set of tools based on
computer-aided design [2], image-based design [3] and implicit
surfaces design [4] for scaffold design. Scaffold designs with ran-
domly shaped pores [23] or different unit cells [24] in a periodic
architecture are reported. However, previous approaches only
allow to generate scaffolds with repeated structures under spe-
cific rules which are not enough for the requirements of biology
similarity in tissue repairing.

2.2. Example-based texture synthesis

Texture synthesis methods [9–11,25,26] have been widely
used in generating large images from small given examples.
Given a 2D image as exemplar, example-based texture synthesis
method can generate large-size images with similar patterns
(e.g., [27] and [28]). Based on this example-based philosophy,
studies (e.g.Kopf et al. [12], Chen et al. [13], Liu et al. [29])
employed several 2D orthogonal images to synthesize 3D solid
structures, aiming to produce results that share visual appear-
ance with the exemplars; however only limited information is
contained in 2D slices, which is unable to produce convincing
results. Instead, Zhang et al. [14] directly used 3D volumetric
data from micro-CT scans to synthesize 3D porous materials,
leading to satisfactory results. Yet, repetitive parts and a low
degree of spatial coherence can be observed. This is attributed
to the locality nature of example-based texture synthesis meth-
ods, which makes it difficult to learn global distribution of the
exemplar through optimization of local neighborhood matching.
While this limitation may be handled by using a relatively larger
patch size in 2D, enlarging the size of a 3D cubical region would
rapidly increase the computational cost and memory. Thus, tra-
ditional example-based methods can be prohibitive in producing
convincing 3D results.

Our introduced novel structural loss term is to enforce strong
spatial coherence of synthesized results by considering deep fea-
tures similarity in the network, and target to synthesize shapes
in 3D space, which is different from traditional texture synthesis
methods that enforce the neighborhood similarity in image space.
Once our network is well trained, the generator can produce
synthesized results without extra similarity comparison, which
again differs from general texture synthesis methods.

2.3. Image synthesis based on deep learning

Recently, deep learning methods [17,18,30–35] have enabled
general users to obtain visually compelling image synthesis re-
sults. In particular, perceptual loss was proposed in [30] to en-
hance the performance of image generation tasks by comparing
the difference between feature representations. In order to cap-
ture the intrinsic structure and style of the exemplar, Gatys et al.
[17] proposed to use the Gram matrix as a feature descriptor for
texture synthesis, nicely producing visually appealing results. Li
and Wand [36] proposed to compute patch-based texture syn-
thesis with deep neural features, which could generate plausible
style transfer results but not considering global control. To cir-
cumvent the limitations of high computational burden suffe-
red by previous works, feed-forward networks were applied in
[31,37]. Sendik and Cohen-Or [38] and Bergmann et al. [19] pro-
posed advanced methods for handling image textures with strong
periodicity. A GAN-based method [39] is proposed to perform
translation between images, e.g. generating an image given a
sketch or vice versa. In this work, a PatchGAN model is devised.
It gives real-or-fake scores to all patches in the last hidden layer
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nd then averages the scores to obtain the final score of the
ynthesized result. Different from PatchGAN, we follow the con-
entional GANs framework and produce a real-or-fake score for
ach generated (3D) image. It does not measure the difference
etween feature spaces of two images, and thus is different to
ur method. We compare our results with theirs in the Result
ection.
Our proposed structural loss is most related to the perceptual

oss that is widely used in many different image synthesis tasks.
owever, we compute our structural loss in different layers only
ithin cubical regions, instead of comparing the loss between

eature maps of reference exemplars and synthesized results, in
rder to measure only regional similarity between the synthe-
ized results and the reference. We also employ cubical regions
ith different aspect ratios to capture anisotropic perceptual

eatures.

.4. 3D Content generation using deep learning

Generating and reconstructing 3D shapes and objects has also
ttracted increasing interest in recent years [20,40–42]. Wu et al.
20] proposed 3D Shapenets, a large scale database for 3D content
odeling tasks. Generative adversarial networks [43,44] for 3D
ontent generation and editing [40,45] have also received in-
reasing attention. As GAN frameworks often produce synthetic
utputs with limited sizes, Jetchev et al. [18] proposed the spa-
ial GANs to improve the scalability, which is beneficial to 3D
ontent modeling. Most aforementioned studies on 3D content
eneration aim to synthesize man-made objects, such as chairs
nd airplanes. However few approaches focus on generating 3D
bjects with intricate internal structures. A recent work [46]
roposes to generate 3D porous materials via a direct usage of
AN, which is barely adequate (as shown in our experiment)
o derive materials with desired properties. In summary, current
tudies have not carefully considered the task of generating 3D
odels with complex internal structures. Therefore, in this paper
e attempt to propose a ScaffoldGAN for this task, and discuss
he effectiveness of the novel terms added to the baseline GAN
odel.

. Approach

Taking a voxel-based exemplar scanned from real-world scaf-
old material (e.g., bone) as input, Our approach could output
synthesized 3D scaffold structure that resembles the given

xemplar in terms of visual appearance, spatial coherence, and
tatistical metrics, after training on the samples extracted from
nput exemplar.

.1. Model

We adopt the generative adversarial networks as our baseline
odel, which consists of two networks, i.e., generator G and
iscriminator D that are trained alternately by solving a minimax
roblem defined as below:

min
G

max
D

Ladv(D,G) = Ex∼pdata(x)[log(D(x))] (1)

+ Ez∼pz(z)[log(1 − D(G(z)))]

where x denotes training samples and z denotes noise tensors
andomly sampled from a given distribution pz. During the adver-
arial training, performance of discriminator D is maximized so
hat it can correctly distinguish real samples x from synthesized
esults G(z); on the other hand, generator G is trained to minimize
log(1−D(G(z))) to produce indistinguishable synthesized results.

The adversarial training facilitates learning the data distribu-
tion p of the training samples, which are extracted from a
data(x)

3

Fig. 1. Bone exemplars (c) extracted from a CT scan (b) of vertebral bone (a).
Different morphology can be observed in the samples from different regions.
The synthesized result (d) of the ScaffoldGAN strongly resembles the exemplar.

given input exemplar of a larger size (details are shown in the
data preparation section). However, the adversarial loss alone
is unable to take into account regional similarity between the
synthesized results and training samples in both appearance and
spatial coherence.

To this end, we incorporate additional structural loss (Ls) and
ram loss (Lg ) into adversarial training to formulate a novel loss
unction as follows:

total = Ladv + λgLg + λsLs, (2)

here λs and λg are balancing weights. This formulation explic-
tly enforces regional similarity between the synthesized results
(z) and the training samples x, thereby maintaining the spatial
oherence as well as visual appearance observed in the exemplar.

.2. Structural loss for spatial coherence

The structural loss is defined as the cumulative summation
f the matching errors between sampled cubical regions from
he convolutional feature maps of the synthesized results and
heir optimal matches from the exemplar. In this way, the spatial
oherence similarity at different scales is explicitly measured by
he structural loss, and thus minimizing it shall lead to better
ynthesized results satisfying the aforementioned requirement.
We denote a cubical region centered at point p as Cp ∈

w×w×w . Given two cubical regions from the same convolutional
eatures at layer l, the error between them is calculated as fol-
owing:

(p, q) = ∥F l(Cp) − F l(Cq)∥2 (3)

where F l(C) returns the corresponding features defined on the
cubical region C.

As our goal is to ensure the spatial coherence similarity be-
tween the exemplar and the synthesized output, we search for
a given cubical region Cq (from the synthesized result) its best
match Cp̂ by minimizing the matching error (Eq. (3)) for all
andidate cubical regions from the corresponding layer of the
xemplar. This leads to the formulation of the structural loss:

s =

∑
l

∑
q

∥F l(Cp̂) − F l(Cq)∥2 (4)

where p̂ = argminp∈P E(p, q).
In order to efficiently search the optimal matching cubical

region from the training samples for each individual cubical re-
gion in the synthesized result, we construct a look-up table
{F l(Cp); p ∈ P} which contains a large number of features defined
on the cubical regions Cp from the training samples. These cubical
regions are obtained as follows. From the feature maps of each
convolutional layer l we sample a set of anchor points P = {p}
with a stride s along all axes and form the cubical regions C
p
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Fig. 2. The architecture of our proposed ScaffoldGAN. Generator G takes a random noise tensor z(100, 1, 1, 1, 1) as input and outputs a synthesized result G(z)(643)
oxels during training. Discriminator D is trained to distinguish real training samples x (extracted from given exemplar(643) voxels) from fake synthesized results
(z). After the network is well trained, given a random noise tensor z(100, 1, 5, 5, 5), we show the synthesized result in the right (1203) voxels.
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Fig. 3. Illustrate of the cubical region chosen on feature layers.

of width w centered at p. Fig. 3 illustrates the chosen cubical
egion on feature layers. This is repeated for feature layers in
which construct the look-up table. The anchor points in the

ook-up table are sampled prior to the training, and the look-
p table itself is refreshed once the discriminator is updated
uring the discriminator training stage for each iteration. Thus,
he structural loss is obtained by feeding the synthesized result
(z) to discriminator D and evaluating Eq. (4).

.3. Gram loss for visual appearance

As shown by previous studies in image synthesis or texture
ynthesis [17–19], the gram loss, Lg , is helpful for reproducing
isually similar appearance of exemplar, and thus considered into
ur loss function. However, computing the full gram matrices
or a volumetric image is prohibitive; therefore, multiple slices
ith equal spacing sampled from all three dimensions are used
o compute the gram matrices. The weight for the gram loss term
s derived through careful ablation experiments.

The extended 3D gram loss are described as: Lg =
∑

l∈L

gl
m,n

(G(z)) − gl
m,n(x)

2, where z is the random noise and x is the
training sample. gl

m,n(G(z)) and gl
m,n(x) are the gram matrices at

layer l of the synthesized result G(z) and the training sample x,
espectively. The gram matrix gl

m,n is the inner product of feature
aps f lm,k and f ln,k. The gram loss can encode the characteristic of
D complex structures to produce visually plausible synthesized
esults.

.4. Network architecture

The architecture of our ScaffoldGAN is illustrated in Fig. 2,
hich contains two fully convolutional neural networks, i.e., gen-
rator G and discriminator D. The discriminator consists of five
D convolutional layers with 64, 128, 256, 512, and 512 feature
aps, respectively. A batch normalization and a leaky ReLU ac-

ivation function are consecutively applied to each of the first
our convolutional layers and a Sigmoid layer is applied to the
4

final layer. The generator consists of five 3D volumetric deconvo-
lutional layers where the number of feature maps at each layer
is 512, 512, 256, 128 and 64, respectively. Fully deconvolutional
layers are chosen here since they allow generating outputs of
arbitrary size from z. Each of the first four deconvolutional lay-
ers is followed by a batch normalization and a ReLU activation
function, while the final is followed by a Tanh activation. In both
convolutional and deconvolutional layers, the size of the kernel
filters and the stride is set to 43 and 23, respectively.

4. Data acquisition and implementation

4.1. Data preparation

Three types of datasets are used for evaluation, a bone dataset
and a metal foam dataset that were scanned with micro-CT by
ourselves, with an extra public stone dataset [22].

Exemplars in bone and metal foam datasets are acquired from
real-world materials via high-resolution micro-CT imaging sys-
tem (SkyScan 1076). Six bone exemplars are extracted from a
trabecular bone scan with 7146 micro-CT slices whose size is
3936 × 3936 at the resolution of 17 µm. The metal foam dataset
contains three categories of exemplars (i.e., Ni, Cu and Al), which
also have intricate internal structures similar to trabecular bones.
Each exemplar in this dataset consists of 1563 micro-CT slices
with 1952 × 1824 at the resolution of 8 µm.

In order to feed the volumetric data to our framework for
training, we down-sample all pieces of materials to a size of 1003

as given 3D exemplars. It will be shown in the next section, the
down-sampled exemplars still well preserve substantial intricate
geometric details. Training samples are then extracted from each
exemplar (1003) with a stride of 2 voxels along all axes to form
a training dataset. Every training sample has a size of 643 vox-
ls, and thus around 6k training samples are obtained, ensuring
ufficient samples for training.

.2. Implementation details

Our method is implemented on a desktop featuring an Intel(R)
ore(TM) i7-6700 CPU with 3.40 GHz, 32 GB RAM, and an Nvidia
eForce GTX1080 graphics card. Each exemplar can be viewed
s a distinctive object due to the differences in their geometry
nd appearance. Thus, we train a generative model using our
caffoldGAN for each exemplar. In each iteration, a batch of 100
raining samples (of size 643 voxels) are randomly selected from
ach training dataset (formed by 6k training samples extracted
rom an exemplar). The synthesized results are generated by
roviding with generator G a random tensor z sampled from the
niform distribution at each iteration. No paired data is needed
or training our ScaffoldGAN, which reduces substantial labor. Our
ethod can generate large synthesized results in size (e.g. 2003
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Fig. 4. Visualization of 3D feature maps in different layers of discriminator D
Top to bottom: layer0 to layer3).

oxels), which is larger than the training samples of size 643

oxels.
To find out the contribution of each layer to distinguishing

tructural features in the exemplar, we visualize the feature maps
f discriminator D in different layers in Fig. 4. The different fea-
ure maps reveal that they encode detailed patterns with various
tyles. We apply the structural loss to the feature maps at first
hree convolution layers (l0 to l2). Through our observation, the
eature maps from l0 to l2 can effectively encode spatial features
rom the training samples. As the size of feature maps drasti-
ally decreases at l3 and l4, it is difficult to recognize visually
ignificant features. The size of cubical regions for structural loss
omputation is set to 83 for l0, 43 for l1, and 23 for l2. The
ampling strides between neighboring cubical regions are 8, 4 and
(along each coordinate axis) for l0, l1 and l2, respectively. These
arameters can lead to better spatial coherence, which have been
ested through extensive experiments. The weights for balancing
he effects of different terms in the loss function are set to be
s = 1, λg = 0.1. More details could be found in the ablation study
Fig. 13) on effects of different loss terms and our design choice
f weights. ADAM is chosen as our optimizer with the settings
f [44].
To have a better understanding of how our ScaffoldGAN is

rained and its training stability, we study the training behavior
f our network by visualizing the training curves of generator
nd discriminator losses with synthesized results at different
terations in Fig. 5. The first circle demonstrates a synthetic result
t initial several thousand iterations, which is difficult to recog-
ize any desired structures because the generator has not been
ully trained. After fifteen thousand iterations, the details in the
ynthetic result are refined and structures are much clearer as
isualized in the 2nd and 3rd circles in Fig. 5. When it comes
o forty thousand iterations as visualized in the 4th circle, the
ynthesized structures become even clearer that could resemble
he exemplar and finally remain almost unchanged as iteration
roceeds.

Fig. 5. Training curve and synthetic results visualization from generator G at
ifferent iterations.
5

Fig. 6. A 3D synthesized result from foam Ni and its cross-sectional views from
different directions. The input is shown in Fig. 7.

5. Experimental results and discussion

We train our network via the combined objective function, the
synthesized results are generated by passing the generator G a
random noise z sampled from the uniform distribution.

We first show the synthesized result of metal foam Ni is shown
in Fig. 6 with top, side and front view, where the given exemplar
foam Ni is shown in Fig. 7. Next, synthesized results with a very
large size (4203 voxels) are shown in Figs. 9 and 10. Finally, we
also rendered, in Fig. 11, the cross-sectional views of the above 3D
synthesized results with 50 consecutive slices chosen randomly.

Synthesized results show that our method could generate
compelling results with complex structures similar to the exem-
plars but in a large size. Overall, the spatial coherence is well
preserved as seen from these visualized results, and few blurry
or repetitive parts can be observed. We will make our datasets
(including both the bone dataset and the metal foam dataset)
publicly available for future studies.

To validate the diversity of our synthesized results produced
by our networks, we generate the training dataset which contains
a large number of samples with rich variations covering the data
space. We randomly sample a large number of noise tensors z
for each type of data and pass them to generator G. From the
synthesized results, we observed that our trained networks are
able to generate results with diverse patterns, experimentally
indicating that there is little chance that mode collapse would
occurs for both exemplars. For each exemplar (the bone or the
foam Ni) three synthesized outputs are randomly selected and
illustrated in Fig. 8, showing that the synthesized results have
quite different microstructures.

6. Evaluation and ablation study

We validate our method via qualitative and quantitative com-
parisons with the state-of-the-art methods: (1) GAN-based meth-
od: Wu et al. [40] (BaselineGAN with Ladv only), PatchGAN [39];
(2) Conventional example-based methods: Kopf et al. [12], Chen
and Wang [13] and Zhang et al. [14]. We also conduct the ablation
study to demonstrate the effectiveness of the proposed structural
loss Ls.

6.1. Qualitative evaluation

Fig. 7 shows the comparison of results on visual appearance
using our method and the state-of-the-arts. Two exemplars with
highly distinctive materials, Bone0 and metal foam Ni, are cho-
sen to demonstrate the performance of our method. The cross-
sectional views are rendered with 10 consecutive slices using

ParaView [47].
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selected from corresponding 3D synthesized results are shown in the bottom two rows. Rectangles highlight failure parts in the results, e.g., voids in Wu et al.
repeated parts in Zhang et al. and undesired intertwined structures in ours.
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Fig. 8. Diversity analysis of synthesized results generated from three different
noise tensors z given the bone (shown in top row) and the foam Ni (bottom
row) as exemplars.

For the GAN-based method, the generic framework of Wu
t al. [40] (BaselineGAN with Ladv only) for 3D content modeling
s considered as our baseline. As shown in Fig. 7, the results
y Wu et al. suffer from the difficulty of reproducing the local
tructure similar to the given exemplars. This can be easily seen
rom the top of the 3D result of Bone0 and is very obvious in the
D result of metal foam Ni. From the cross-sectional views, more

disconnected branches reveal in the bone result by Wu et al. than
in ours. Large voids (highlighted by dashed rectangles) can be
observed in the results of metal foam Ni. In order to further prove
that our method outperforms PatchGAN [39], we generalize it to
3D case and compare their results with ours. Similar problems
6

also exist on the synthesized result of PatchGAN, especially on
the synthesized result of metal foam Ni where there are many
disconnected part and floating structures. Both indicate that the
baseline model alone (with only Ladv) and patchGAN cannot well
reserve the spatial coherence and visual appearance observed in
he exemplar.

For conventional example-based methods, disconnected struc-
ures are easily observed in 3D results by methods based on 2D
nformation [12] and [13] and highlighted by the dashed rectan-
les in the cross-sectional views. Using volumetric exemplars as
nput, results by Zhang et al. [14] could preserve fine-grained,
ellular features in a degree. However, repeated artifacts (for
one0) and low spatial coherence (for metal foam Ni) are found
n the regions highlighted by the rectangles in Fig. 7.

Overall, our results are better than the others through visual
xamination. For Bone0, our result has a higher degree of spatial
oherence and strong connectivity similar to the exemplar as can
e seen from both the 3D model and the cross-sectional view.
or metal foam Ni, cellular structures are perceivable in our result
as well as in the result by [14]), while other methods fail to
eproduce this geometric feature. We also highlighted some of
inor issues observed in our results with the dashed rectangles.

n summary, our proposed method can effectively enhance the vi-
ual quality of the synthesized results from spatial coherence and
ppearance, and thus outperforms the state-of-the-art methods.

.2. Quantitative evaluation

To validate our method on spatial coherence and morpho-
ogical properties, we conduct experiments for each exemplar
n the bone dataset and a metal foam Ni exemplar, and report
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Fig. 9. Large-size synthesized results of different exemplar input from different regions of bone: Each bone exemplar (shown in left, 1003 voxels) and its 3D synthe-
sized result (shown in right, 4203 voxels).

Fig. 10. Visualization of 3D view of the synthesized results (4203 voxels), bone exemplar are Bone0 , Bone1 , Bone2 , Bone3 , Bone4 and Bone5 .

7
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able 1
uantitative comparison with state-of-the-art methods on Bone0 (columns 2–5) and metal foam Ni (columns 6–9). Listed are relative errors of porosity (εerr%), l2
ifference of two-point correlation functions (D2(φ)) between the synthesized results and the exemplars and connectivity measurements, i.e., the number of connected
omponents (Ncc ), the number of floating parts (Nf ) and the Wasserstein distance (Dw) for connectivity measure. Average timing (s) for generation is listed in last
olumn. The time for training each GAN-based model is around 4 hrs. Rows 2 shows the corresponding ground truth values of the given exemplars.
Methods εerr% D2(φ) Ncc/Nf Dw εerr% D2(φ) Ncc/Nf Dw Time (s)

Metrics (Ground Truth) 73.66 N.A. 6/4 N.A. 88.24 N.A. 4/2 N.A. N.A.

Kopf et al. [12] 20.27 43.39 268/159 5.18 10.07 44.88 878/121 2.35 1922
Chen et al. [13] 13.78 32.39 116/106 5.08 3.77 36.91 158/74 2.30 2164
Zhang et al. [14] 2.86 8.97 20/11 4.02 2.11 13.67 22/13 1.91 1441
Wu et al. [40] (baseline GAN Ladv) 1.51 5.95 40/17 4.60 2.02 18.30 28/8 2.00 0.094
PatchGAN [39] 1.49 5.83 30/23 4.38 1.89 16.31 34/14 2.16 0.095
baseline GAN Ladv + Lg 1.16 5.79 26/19 4.26 1.70 15.39 17/9 1.76 0.095
baseline GAN Ladv + Ls 0.71 3.27 8/5 1.79 0.85 6.11 8/4 0.74 0.096
Ours (Ladv + Lg+ Ls) 0.59 3.05 6/3 1.53 0.73 5.23 6/3 0.51 0.096
Fig. 11. Visualization of 3D cross-sectional views of the above 3D synthesized results with 50 consecutive slices chosen from synthesized results randomly (420
× 420 × 50 voxels).
the averaged value of each metric from 10 randomly synthesized
results for corresponding exemplar.

Porosity ε [15] and two-point correlation function φ [16] are
dopted in our evaluation, which are two frequently used metrics
or characterizing materials. We also measure the connectivity of
he synthesized results based on three metrics, i.e., the number of
onnected components (Ncc), the number of floating parts (Nf ),
nd a measure (Dw) based on the Wasserstein distance with
espect to the size of connected components. We will explain in
etail the definition of each metric later.
Table 1 shows the comparison among different methods on

he Bone0 exemplar and the metal foam Ni exemplar. To validate
he effectiveness of our method on various exemplars, we also list
n Table 2 the metric values of another five exemplars extracted
rom different regions of a vertebral bone from the bone dataset
see Fig. 1(a)).
8

Table 2
Ground truth metric values (Rows 2–3) and those of synthesized results (aver-
aged over 10 results) of each bone exemplar (Bone1 to Bone5) are presented.
Results show that our method performs stably on various exemplars.
Category Bone1 Bone2 Bone3 Bone4 Bone5 Average

ε 72.50 70.42 69.98 72.63 73.06 N.A.

Ncc/Nf 6/3 6/4 5/3 4/2 8/6 N.A.

εerr% 0.54 0.61 0.67 0.66 0.55 0.60
D2(φ) 4.26 3.50 2.01 3.79 4.61 3.54
Ncc/Nf 9/3 6/4 7/4 8/5 11/4 N.A.

Dw 1.87 1.70 2.73 2.12 1.17 1.85

(a) Evaluation on Porosity.
The porosity ε is a measure of the void volume fraction in a

specific volume, which is defined as: ε = |V|/|V |, where |V| and
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Fig. 12. Two-point correlation functions φ (Bone0 and metal foam Ni) for our
method and the state-of-the-arts methods. Our results well approximate the
exemplar.

|V | are the numbers of void voxels and total voxels in the 3D
model, respectively. The relative error between the exemplar and
the synthesized is measured as εerr = |εE − εS |/εE . As seen from
Table 1, the porosity of our synthesized results is much closer
to that of each given exemplar. For Bone0 and metal foam N i, the
relative error of porosity to the exemplar (errε) of our synthesized
results are 0.59% and 0.73%, respectively. Both values are half
smaller than those (1.16% and 1.70%) produced by baselineGAN
with Lg (Ladv+Lg ). Besides, both values of our approach are largely
smaller than PatchGAN [39] (1.49% and 1.89%), and other conven-
tional example-based methods [12–14]. This illustrates that our
approach (Ladv + Lg + Ls) is capable of preserving the porosity of
synthesized results similar to that of the given exemplar. Table 2
shows that the porosity of synthesized results is stable.
(b) Evaluation on Two-point correlation function.

Two-point correlation function is a statistical measure for
characterizing distribution of different materials in a volume [48],
indicating the pore size and spatial coherence. Given a two-phase
function φ(v) defined on domain V which equals 1 when v lies
in the solid phase or 0 in the void, a general definition of the
two-point correlation function is as follow: P(r) = ⟨φ(v1), φ(v2)⟩,
here r = v1 −v2 and ⟨·, ·⟩ denotes the expectation over domain
. In our evaluation, we define the binarized volumetric results
s the phase function φ and compute P(|r|) with the distance
r| ranging from 1 to 50 voxels (neglecting the direction of r for
implicity). The corresponding two-point correlation functions of
he synthesized results are plotted in Fig. 12.

The l2 differences, denoted D2(φ), of two-point correlation
unctions between synthesized results by different methods and
he exemplar are listed in Table 1 for comparison. Our results
eviate the least from the exemplars for Bone0 and metal foam Ni
3.05 and 5.23, respectively). Differences of the rest of results are
ore than double (for Bone0) or triple (for metal foam Ni) of ours.
s it can be seen from Table 1, PatchGAN [39] produces results
nly comparable with those by the adversarial and gram loss (Ladv
Lg ), while our methods adding the structural loss (Ladv + Ls) lead
o large improvement. In particular, lower values of D2(φ) and Dw

n ours reflect high similarity of spatial coherence between the
riginal and synthesize materials. More statistics on other bone
xemplars can be found in Table 2. This clearly evidences the
ffectiveness of the proposed structural loss in enhancing spatial
oherence of the synthesized results.
c) Evaluation on Connectivity.

We also measure the connectivity of the synthesized results
o demonstrate the effects of the combination of the structural
oss and the adversarial loss on connectivity. To this end, we
irst count the number of connected components (Ncc) and of
loating parts (Nf ). A connected component is considered as a
loating part if its size is smaller than 10 voxels. Further, we
efine another connectivity measure based on the Wasserstein
istance between two sets of connected components from two
espective volumetric models, which is defined as:

= WD(H ,H ), (5)
w S E b

9

Fig. 13. Ablation study on different loss terms. Values in pair indicate (λg , λs).
Decreases in relative errors of the porosity and two-point correlation function
differences can be seen when the structural loss is introduced at (0.1, 1). l2
difference of two-point correlation functions and the porosity are denoted as
Two-point and Porosity, respectively. (Vertical axis log2).

where H is the set of connected components in a volumetric
model, and the size of each connected component is normalized
by the volume of the model. Since the Wasserstein distance
measures the difference between two distributions, Dw in fact
reflects similarity between the two models in terms of how voxels
are distributed and grouped into connected components.

As seen from Table 1, our results have the minimal number of
connected components Ncc (6) and floating part Nf (3) for both
Bone0 and metal foam Ni compared to other methods; Ncc and
Nf of the baseline GAN model (40/17 for Bone0 and 28/8 for
Ni, respectively) are several times of ours; Zhang et al. and the
baseline GAN model plus the gram loss produce slightly better
results than the baseline GAN model, but still not comparable
to ours. In addition, values of Wasserstein distance based metric
Dw for ours (1.53 and 0.51 for the two exemplars, respectively)
show that our results are much closer to the exemplars in terms
of spatial coherence and connectivity. The averaged value of Dw

f synthesized results based on the other five bone exemplars is
.85 (see Table 2), showing that the connectivity of synthesized
esults is stable and quite similar to the exemplars.

.3. Ablation study

To validate our design choice, we conduct ablation experi-
ents (on two exemplars, Bone0 and metal foam Ni) to compare

each loss term in the full loss (Ladv + λgLg + λsLs). First, we train
ur network with only Ladv (with λg and λs set to 0), which is
quivalent to Wu et al. [40] (baselineGAN). Then, we consider
he effect of Lg by adding it to Ladv (Ladv + λgLg ). We gradually
ncrease the weight λg = 0.01, 0.1, 1 and 10 and train the network.
e find that the best performance in such setting is when the
eight equals 0.1. Next, we train the network by only using the
tructure loss Ls and set the λg to zero (Ladv + λsLs), where the
elated error has dropped obviously. Finally, we train the network
y incorporating our proposed structural loss Ls and the previous
etting (λg = 0.1) together (Ladv+0.1Lg+λsLs), which produces the
est results. Performances in terms of the porosity and two-point
orrelation difference (in l2 sense) are plotted and compared in
ig. 13.
From the figure, we can see that the synthesized result use

aselineGAN with only Ladv has similar performance with Zhang
t al. [14]. By adding weighted Lg , the relative errors of porosity to
he input decrease slightly. However, little improvement in terms
f the two-point correlation function difference is observed, indi-
ating the gram loss Lg alone cannot enhance the spatial coher-
nce, which validates our design choice. Better performance is
btained when the structural loss Ls is added. Especially for
-point correlation (widely used to characterize material distri-
ution), the relative error derived with L (Ni) reaches 5.23%,
s
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Fig. 14. Qualitative comparison with state-of-the-art methods on the ICL dataset.
Synthesized results and three corresponding slices are shown. Our method also
produces better results than others in terms of both visual appearance and
spatial coherence.

only one third of the most competing result derived without Ls
15.39%, λg = 0.1). In particular, two-point correlation function
differences with respect to both exemplars are remarkably re-
duced. Connectivity metrics also show the necessary strengths of
Ls. In summary, while the GANs framework (with Ladv) generally
hows better performances over the conventional methods, our
roposed structural loss brings remarkable decrease in all metrics
onsidered here for both exemplars.

.4. Experiments on more datasets

To analyze the generalizablity of our method, we also present
he results on synthesis of four stone exemplars (i.e., Bentheimer,
oddington, Estaillades and Ketton) from the dataset [22] and two

metal foams Cu and Al, which also have highly complex internal
structures similar to bones. For each exemplar, we randomly gen-
erate 10 different results and calculate the mean value for each
statistical metric. The comparison on metrics between our meth-
ods and the state-of-the-arts is shown in Table 3, and visual
comparison containing synthesized results and multiple 2D slices
are shown in Fig. 14. These experiments illustrate that our pro-
posed method can also produce convincing results in terms of
both statistical metrics and visual appearance, which is especially
obvious for Bentheimer.

6.5. 3D Fabricated results

We fabricate the digitally synthesized materials obtained by
our ScaffoldGAN using a photosensitive resin 3D printer. We
post-process the synthesized bone scaffolds by extracting the iso-
surface of solid structures for manufacturing. We show the scaf-
fold material from real world and show the structurally complex
skeleton of the scaffold materials together with the synthesized
result from our network.

As can be seen from Fig. 15, the 3D printed prototypes retain
rich fine-grained details and exhibit high visual similarity with
the corresponding exemplars, implying that synthesized results
by our method can be reliably fabricated while maintaining the
design intent. Physically manufacturing bone scaffold may be dif-

ficult due to complex geometries, varying mechanical properties

10
Table 3
Quantitative comparison with state-of-the-art methods on the ICL dataset and
metal foam Cu and Al. Mean values of different metrics are shown for each
exemplar.
Category Benth. Doddi. Estai. Ketto. Cu Al

Exemplar ε % 19.34 15.18 13.56 12.10 86.80 84.99
εOurs w Ls 1.79 3.24 0.83 0.27 3.96 2.03
ε w/o Ls 10.13 9.39 11.01 9.85 5.12 4.98
ε Wu et al. [40] 11.72 11.23 12.50 7.89 5.89 6.49
ε Zhang et al. [14] 1.85 11.41 13.31 11.39 10.19 12.87
ε Chen et al. [13] 28.69 4.31 2.57 4.89 4.87 5.46
ε Kopf et al. [12] 6.29 16.16 9.51 9.42 5.94 5.24

φOurs w Ls 0.36 1.29 1.69 1.53 0.36 0.40
φ w/o Ls 1.24 2.01 1.96 2.73 1.49 2.15
φ Wu et al. [40] 0.40 3.10 6.89 2.95 2.30 2.81
φ Zhang et al. [14] 3.51 4.86 9.29 5.34 4.06 4.39
φ Chen et al. [13] 0.91 7.14 1.99 4.48 0.90 1.20
φ Kopf et al. [12] 1.33 4.13 6.87 2.16 1.10 1.63

Fig. 15. Two views of the 3D printed synthesized result based on Bone0 (left)
and two views based on the metal foam Ni (right) are shown. Rich fine-
grained details can be maintained after converting our digital results to physical
prototypes.

and manufacturability of the models. Hence, success fabrication
of the synthesized results indicates that the results are ready for
physical prototyping. Thus, it shows our approach could achieve
complex bone scaffold synthesis given a natural exemplar and
produce manufacturable results that ensure the pore size and
inter-connectivity of the scaffolds to be similar to the exemplar.

7. Limitation and future work

Training a general network using all categories of microstruc-
tures is very challenging and also the limitation. Currently, train-
ing with mixture of data does not generate good results. This is a
very interesting question and also one of our future work. Since
our approach is data-driven based, the difficulty of obtaining
dataset is another limitation, which is difficult for us to test the
model on more diverse data. Careful modulation is required to
separate data from different categories in the latent embedding
space. One future work is to show the functional appropriateness
such as endurance to impacts/loads and biological compatibility.
Another one is to use sketch or other method to control the
synthesized result with different direction and scale, also with
different porosity. This makes the final result is regional con-
trollable and could generate the desired 3D shape with complex
internal structures.

8. Conclusion

In this paper, we have presented ScaffoldGAN, an efficient end-
to-end framework based on the generative adversarial networks
and a novel structural loss, to synthesize complex scaffold ma-
terials via a single exemplar. With the well-trained generator,
we are able to synthesize 3D models of materials with intricate
internal structures within seconds. We also collect two datasets
containing six bone exemplars from different regions of a real
vertebral bone and three metal foams, all of which are acquired
via high-resolution microCT scanning. Extensive experimental
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esults show that our method is able to reproduce 3D scaffold ma-
erials with visual appearance, spatial coherence, and statistical
etrics closely resembling the given exemplars. Our method also
utperforms both conventional example-based texture synthesis
ethods and the baseline GAN model plus the gram loss. This,

ogether with the ablation study, demonstrates such appealing
roperties are attributed to the combination of adversarial nets
nd the deep structural loss. State-of-the-art performance on
he ICL dataset (containing four stone exemplars) also indicates
hat our method can be generalizable to other similar tasks of
ynthesizing heterogeneous materials. We will make our col-
ected datasets publicly available to facilitate future studies in
he relevant communities. How to exploit deep representations to
esign effective supervision for recovering fine-grained structures
n high fidelity observed in the materials is our future work.
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