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Figure 1: Surfacing an artist created curve network: (a) an input curve network of the coffee maker model; (b) initial surface; (c) the computed
flow field aligned with network flow lines denoted by dashed white lines on the initial surface; (d) final surface whose curvature directions
(scaled by principal curvatures) (e) are well aligned with the representative flow lines in the curve network.

Abstract

We propose a new approach for automatic surfacing of 3D curve
networks, a long standing computer graphics problem which has
garnered new attention with the emergence of sketch based mod-
eling systems capable of producing such networks. Our approach
is motivated by recent studies suggesting that artist-designed curve
networks consist of descriptive curves that convey intrinsic shape
properties, and are dominated by representative flow lines designed
to convey the principal curvature lines on the surface. Studies indi-
cate that viewers complete the intended surface shape by envision-
ing a surface whose curvature lines smoothly blend these flow-line
curves. Following these observations we design a surfacing frame-
work that automatically aligns the curvature lines of the constructed
surface with the representative flow lines and smoothly interpolates
these representative flow, or curvature directions while minimiz-
ing undesired curvature variation. Starting with an initial triangle
mesh of the network, we dynamically adapt the mesh to maximize
the agreement between the principal curvature direction field on
the surface and a smooth flow field suggested by the representative
flow-line curves. Our main technical contribution is a framework
for curvature-based surface modeling, that facilitates the creation
of surfaces with prescribed curvature characteristics. We validate
our method via visual inspection, via comparison to artist created
and ground truth surfaces, as well as comparison to prior art, and
confirm that our results are well aligned with the computed flow
fields and with viewer perception of the input networks.

CR Categories: I.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling—Geometric algorithms, languages, and
systems;

Keywords: curve networks, surfacing, flow lines

1 Introduction

Surfacing of 3D curve networks, also known as lofting or skinning,
is a fundamental problem in geometric modeling. Original methods
focused on surfacing networks specifically designed for this task,
and concentrated on achieving a desired degree of continuity across
network curves and vertices [Farin and Hansford 1999]. More recent
sketch-based modeling practice focuses on creating curve networks
motivated by product design practices [Kara and Shimada 2007; Bor-
degoni and Rizzi 2011; Bae et al. 2008; Xu et al. 2014]. Recent re-
search affirms that such artist-created 3D curve networks effectively
convey uniquely imagined complex 3D shapes [Xu et al. 2014; Bess-
meltsev et al. 2012]. Our work addresses the algorithmic creation
of these artist-intended, imagined surfaces, given the artist designed
curve network. Our framework conceptually differs from previous
work in this area, e.g. [Bessmeltsev et al. 2012], in its use of a con-
tinuous geometric approach for surface fitting which, as we demon-
strate, results in output surfaces better aligned with artist intent.

In our work we assume that the output surface connectivity, i.e. the
set of curve cycles to be surfaced, is detected a priori, e.g. using the
methods of [Abbasinejad et al. 2011; Zhuang et al. 2013]. Our focus
instead is on computing the desired surface shape or geometry. In
doing so, we are motivated by emerging research into human percep-
tion of 3D curve networks as well as observation of artistic practices
in this domain [Bordegoni and Rizzi 2011; Bessmeltsev et al. 2012].
This research indicates that artist-drawn curve networks are domi-
nated by representative flow-line curves [Gahan 2010; Singh et al.
2004; Xu et al. 2014], understood to largely align with lines of cur-
vature, but which allow for artistic license at surface discontinuities,
over fine details, and in umbilic regions. Perception studies suggest
that the curvature lines on the viewer imagined surfaces are per-
ceived as a blend of the flow-line segments on the designer-created
curve cycles. In addition to flow lines, artists employ trim curves
to demarcate sharp features or discontinuous transitions between
surface patches. Artists frequently employ curves that serve a dual
role, as trim curves for one of the attached surfaces and as a flow
line on the other. Viewers leverage perceptual cues to distinguish
between these curves [Xu et al. 2014].

Motivated by these observations, our framework surfaces the curve
network so as to align the principal curvature directions on the sur-
face with the representative flow lines in the artist-created network,
while interpolating the trimming curves. It automatically detects the
artist created feature curves, and generates smooth continuous sur-
faces across the rest of the network curves (Fig. 1(d)). Our method



starts by classifying network curves into trim curves versus flow
lines, and identifying feature versus smooth-transition curves. The
classification leverages the geometric properties of Darboux frames
along curvature lines. While humans can mentally interpolate the
detected flow-line curves, visualizing an imaginary curvature field
and its underlying 3D surface, an algorithmic interpolation of flow
or curvature directions requires a reference surface. At the same
time, we need a reference flow field to generate a surface whose
curvature lines are aligned with the field. We solve this “chicken and
egg” problem using an iterative approach. We compute an initial
surface interpolating the curve network (Fig. 1(b)) by the approach
of [Zhuang et al. 2013; Zou et al. 2013], and then iteratively update
it by first propagating the flow directions hinted at by the flow-line
curves to the interior of the surface patches using a cross field based
formulation, then adapting the surface to align its principal curvature
directions with the cross field. The curvature lines of the resulting
surfaces (Fig. 1(d,e)) are well aligned with the input flow lines.

We validate our approach via a comparison to prior art, and via
comparison to artist created and ground truth surfaces. We also
demonstrate our method’s robustness on a large range of inputs.

Our contribution is threefold:

• We provide an automatic scheme to classify curves into flow lines
versus trimming curves, based on normal vectors generated by
rotation minimizing frames.

• We model a flow field that smoothly interpolates the flow-line
curves based on 4-symmetry cross field modeling.

• We provide an effective algorithm to optimize surfaces by dynam-
ically maximizing the agreement between the principal curvature
direction field and the flow field.

2 Related Work

Our work builds upon the existing body of research in curve network
surfacing, and is related to methods for designing and processing 3D
curve networks, curvature and cross field computation techniques,
and surface fairing methods.

Curve network modeling and processing has been an active
area of research for both the sketch-based modeling community and
computer-aided design (CAD) practitioners. Recent advances in
interactive 3D curve sketching [Bae et al. 2008; Schmidt et al. 2009],
and in lifting 2D curve sketches to 3D [Xu et al. 2014], provide
abundant sources of 3D curve networks of interest. A range of
methods [Abbasinejad et al. 2011; Zhuang et al. 2013; Abbasinejad
et al. 2013; Sadri and Singh 2014] successfully locate curve cycles
in such networks. Our work uses the output of these methods as the
input for surface fitting.

Surface fitting is most commonly formulated as a solution to a
hole-filling problem [Malraison 2000]. Most existing methods re-
quire the cycles to be mapped with low distortion to a convex planar
polygon for successful surfacing [Coons 1964; Gao and Rockwood
2005; Várady et al. 2011]. Researchers handle more general curves
by utilizing a diffusion process designed to create fair or smooth
surfaces [Levy 2003; Das et al. 2005; Nealen et al. 2007; Rose et al.
2007; Finch and Hoppe 2011; Abbasinejad et al. 2011; Zhou et al.
2011]. In particular, the methods of [Schneider and Kobbelt 2001;
Nealen et al. 2007] compute bi-harmonic surfaces by diffusing target
curvature values (typically mean-curvature or variations of it) over
the surface isotropically and adapting the surface to conform with
these values. In contrast our work focuses on propagating a curva-
ture direction field and adapting normal curvatures on the surface
to conform with this field (see Figure 10 for a comparison). As
highlighted by Bessmeltsev et al. [2012], the fairness criterion used
by the previous methods is typically insufficient to produce surfaces

consistent with artist intent. In particular, the curvature lines of these
surfaces are rarely aligned with the flow-line segments in the input
networks (Fig. 1(b)). Developable surface fitting methods [Rose
et al. 2007; Abbasinejad et al. 2013] are similarly unsuitable for
our task. Cycle quadrangulation approaches, such as [Schaefer et al.
2004; Nasri et al. 2009; Takayama et al. 2014], similarly focus on
fairness or topological validity instead of flow line alignment.

Bessmeltsev et al. [2012] surface curve networks by generating
an interpolating quad mesh for each cycle. Their method uses a
discrete approach aimed at aligning the edges of the quad mesh, and
consequently the surface curvature lines, with the cycle boundary
curves. The method frequently creates surfaces that successfully
convey the design intent of the input curve networks; However, the
discrete and local choices are sometimes sub-optimal. As discussed
in Section 6, our continuous global framework results in outputs
more consistent with user intent on a range of inputs (Fig. 8).

Curvature line control on surfaces is a challenging modeling
problem. Principal directions are differential quantities of surfaces
that are sensitive to changes in surface shape. Biard et al. [2010] ad-
dress the narrow problem of computing of a rectangular surface patch
whose curvature lines are aligned with its boundary curves. They
construct Pythagorean-Hodograph curves connecting four given cor-
ner points and the rotation-minimizing frames along the curves, and
interpolate the curves using a discrete Coons patch. Our problem
is more general in that the curve cycles we seek to surface can
have an arbitrary number of sides. Given a quad mesh whose edge
directions are well aligned with curvature lines, one can directly
optimize the curvature along them using conical or circular mesh
formulations [Martin et al. 1986; Liu et al. 2006; Bobenko and Suris
2008] as well as cyclide spline surfaces with a circular mesh as base
structure [Bo et al. 2011; Bobenko and Huhnen-Venedey 2012]. In
our case no such quad mesh is available.

Cross fields are widely used for surface parametrization. A cross
field represents 4 coupled directions which are invariant under rota-
tions of an integer multiple of π

2
. A range of methods exist for com-

puting smoothly varying cross fields. The methods most relevant to
our work are those on cross field computation on surfaces [Kälberer
et al. 2007; Ray et al. 2008; Bommes et al. 2009; Knöppel et al.
2013; Diamanti et al. 2014]. Smooth cross fields aligned with fea-
tures and principal curvature directions on a surface provide a good
starting point for quad meshing[Bommes et al. 2009]. In this paper,
we solve the inverse problem, and use a cross field to guide the
principal directions of an unknown surface that we seek to model.
We define a flow field by augmenting a cross field with proper mag-
nitude to smoothly interpolate the directions of the flow-line curves,
and then use this flow field to guide surface adjustment to create a
desired surface.

Surface processing with curvature targets is commonly used
in geometry processing and animation. Mean curvature flows [Des-
brun et al. 1999] and Willmore flows [Bobenko and Schröder 2005;
Crane et al. 2013] for surface fairing are typical examples. Eigensatz
et al. [2008] present a variety of curvature domain surface processing
tools. Most of the linear variational deformation methods [Botsch
and Sorkine 2008] measure the deviation of curvatures of a surface
from a rest state to drive realistic deformation of the surface. Our
work adjusts surface shape by prescribing target curvatures which
are derived from the requirements of curvature direction alignment.

3 Overview

The input to our method is a curve network we wish to surface,
created via one of the many existing sketch-based modeling
interfaces, e.g. [Xu et al. 2014; Bae et al. 2008; Schmidt et al. 2009].
Our method aims to surface this network in a manner that is most
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Figure 2: Algorithm stages (left to right): input curve network,
initial surface with flow lines (white dashed lines) and feature curves
(red), direction field, flow field, adjusted surface, final surface.

consistent with artist intent and viewer perception. We first note
that artist-drawn curves can be classified into two families [Xu et al.
2014; Bessmeltsev et al. 2012]: flow lines representing the dominant
curvature lines on the surface, and trim lines which define surface
boundaries or sharp features. These curves are expected to serve as
a descriptive representation of the artist envisioned surface [Xu et al.
2014]; as such, the curvature lines on this imaginary surface are
expected to be discernible from, and hence an interpolation of, the
surrounding representative flow lines. To surface a curve network in
a manner that is consistent with these observations, we construct sur-
face patches, delineated by network cycles, such that their curvature
direction field conforms as much as possible to an orthogonal flow
field implied by the flow-line boundary curves. As expected from
a curvature tensor, the flow field is constrained to be orthogonal
and is designed to maximally align with the input flow lines and
to smoothly interpolate the curvature magnitudes along them.

We initiate this process by analyzing the network curves, distinguish-
ing flow lines from trimming curves and feature lines from smooth
transitions (Section 4). We classify curves by computing rotation-
minimizing frames swept along each network curve segment, and
then evaluating their differential properties.

Given a classification of the network curves, we can formulate our
surface optimization goal of maximally aligning the curvature tensor
of the surface with the flow field as follows. Let IIx denote the
curvature tensor of the surface S. Let II(λ(x), θ(x)) denote the
flow field, where θ(x) is the angle defining the orientation of the
tensor and λ(x) = (λ1(x), λ2(x)) are the magnitudes of the two
tensor directions. Using these notations we seek to minimize:

min
S

∫
S

‖II(λ(x), θ(x))− IIx‖2 dx, (1)

To even evaluate this function, we require a reference surface to
compute the flow field II(λ(x), θ(x)). Given such a surface and
a field computed over it, we can then adapt the surface to better
align its curvature lines with the field directions. Starting from an
initial surface (Section 4) we first compute a smooth flow field on
this surface that is well aligned with the input flow lines (Section
5.1 and 5.2). We then adjust the surface by minimizing Equation 1
(Section 5.3). Our adjustment step takes both flow field alignment
and overall surface smoothness into account, generating a surface
which is smooth across non-feature network curves. In the context
of mesh processing we mimic G1 smoothness by requiring the
normals of adjacent facets to be similar. We then repeat the process,
recomputing the flow field and adjusting the surface based on it. The
process terminates once the surface no longer changes. Fig. 2 shows
an overview of our algorithm.

4 Initialization

To compute an initial surface we first detect the network cycles ex-
pected to bound individual surface patches [Zhuang et al. 2013], and
then surface each cycle using a smooth triangulation that matches
boundary normal constraints [Zou et al. 2013; Andrews et al. 2011].
Since our flow field computation benefits from having an underly-
ing evenly sized and high quality mesh, we improve the quality of
the resulting mesh by using a standard combination of Laplacian
smoothing, connectivity improvement via edge flipping [Dyer et al.
2007], and isotropic mesh refinement.

When surfacing the curve network we differentiate between flow
lines and trim curves; while flow lines are used to control the target
surface shape, trim curves are simply expected to lie on the final
surface. We also differentiate between sharp features and smooth
transition curves across which we enforce the surface to be smooth.

Flow lines vs. trim curves We identify flow-line (or curvature-
line) curves by leveraging the relationship between the rotation-
minimizing frame of a space curve and the curvature line of a sur-
face. Let us consider the Darboux frame of orthonormal vectors
F(t) = {γ(t);T (t), B(t), N(t)} moving along a curve segment
γ(t) embedded in a surface S ⊂ R3. Here, T (t) is the unit tangent
vector of the curve γ(t), N(t) is a consistently oriented unit normal
vector of the surface S at the point γ(t), and B(t) = N(t)× T (t).
A moving frame F(t) is a rotation minimizing frame if the normal

vector N(t) satisfies the ODE: dN(t)
dt

=
(
T (t)× dT (t)

dt

)
×N(t),

assuming that the curve γ(t) is C2. Intuitively, a rotation mini-
mizing frame has no rotation around the tangent vector T (t). The
RMF can be computed efficiently by discrete approximation using
the double reflection method at a sequence of sample points on the
curve [Wang et al. 2008]. It is known that if the curve γ(t) is a
line of curvature of S, then the frame F(t) is a rotation minimizing
frame (RMF) along γ(t) [Biard et al. 2010].

V0

V1

Suppose that γ(t), t ∈ [0, 1], is a
boundary curve segment in a cy-
cle Γ with the endpoints γ(0) =
p0 and γ(1) = p1. Clearly, the
normal vector at a corner point
of Γ can be computed by taking
the cross product of the tangent
vectors of the two boundary curves of Γ meeting at the point. Let
V0 and V1 denote the two normal vectors thus assigned at the two
endpoints p0 and p1 of γ(t), which can be regarded as the normal
vectors of any surface patch interpolating Γ. Consequently, if the
boundary curve γ(t) is a curvature line of some surface, then there
exists a rotation minimizing frame (RMF) along γ(t) that carries V0

to V1. In this case, the vectors V0 and V1 are said to be curvature-
line consistent, with an example shown in the inset. Note that this
definition is independent of which of V0 and V1 the RMF starts
with, since an RMF from p0 to p1 is also an RMF from p1 to p0

along the curve γ(t). Therefore, a necessary condition for a curve
segment to be a curvature line is that the normal vectors at its two
endpoints are curvature-line consistent. Hence, to evaluate if a curve
segment is a curvature line we test whether the normal vectors at
its two endpoints are curvature-line consistent by computing the
RMF of the curve. In practice we allow the normal vectors to differ
within a threshold of 10◦ to be curvature-line consistent, which we
empirically find is sufficient to accommodate inaccuracies due to
the polyline discretization.

While computing the RMF [Wang et al. 2008] we define a family
of vectors along the curvature-line curve γ(t) which are known
to be the normal vectors of the solution surface along the curve.
Following [Biard et al. 2010], we will use these normal vectors



(a) (b)

Figure 3: Roadster curve network before (a) and after (b) smoothing.
As shown in the zoomed-in views, the kinks at curve corners are
smoothed out and the curves become more regular.

as boundary conditions for our interpolating surface computation
(Section 5.3).

li0

li1

ci
Smooth curves vs. sharp fea-
tures To determine if a curve ci
should be a smooth transition of
the surface or a sharp feature, we
measure the variation of the surface
normals at its two endpoints. Suppose that the curve ci belongs to
two cycles li0 and li1. We estimate the normal vector of the cycle li0
at an endpoint of ci by taking the cross product of the tangent vectors
of ci and the next curve in li0 sharing the endpoint; similarly, we
get a normal vector at the other endpoint of ci. If the normal vectors
of the two cycles are approximately parallel at both endpoints (we
use a threshold angle of 10◦ to account for discretization errors), we
label the curve as a smooth transition between the surface patches.
Otherwise, the curve is classified as a a sharp feature (see inset).

Curve network fairing Due to the lack of accuracy associated
with interactive curve sketching systems, our input curve networks
frequently contain undesirable discontinuities, both within individ-
ual curve segments and across curve intersections. To generate
a fair output surface we consequently apply an optional uniform
re-sampling and fairing step prior to surfacing the network. The
fairness is a finite difference discretization of curvature variation:

ffair(p0,1,2,3) = ‖ − p0 + 3p1 − 3p2 + p3‖2,

where p0,1,2,3 are a tuple of four consecutive points on a curve.

To improve smoothness at curve intersections, we detect which
curves are expected to be smoothly joined by measuring the angle
formed by the tangent vectors of two curves at the intersection. If
the angle at the joint is smaller than a threshold (we use 30◦) or
user specifies the joint to be smooth, we enforce smoothness by
measuring curvature variation over point tuples crossing the joint.

To summarize, we smooth the curves by minimizing the curvature
variation while constraining the faired curves to remain close to the
input ones:

min
p
β1fclose + β2

∑
ti

ffair(ti),

where fclose =
∑
i ‖pi − poldi ‖2 measures the distance of

the vertices to their original positions, ti are the point tuples,
and β1,2 ∈ R+ control the weights of different terms. In our
experiments we set β1 = 1, β2 = 10 to prioritize fairing. Since the
objective function is quadratic, the minimizer can be efficiently com-
puted by solving a sparse linear system. See Fig. 3 for an example.

5 Iterative Surface Optimization

Starting with an initial surface mesh, we iteratively adjust both the
surface and the smooth flow field defined with respect to it. We aim
to satisfy two key goals: we seek to maximally align the flow-field
directions and magnitudes with the flow-line segments in the curve
network, while simultaneously aligning the curvature field of the

surface with the flow field, minimizing Eqn. 1. Since one cannot
even compute a flow field without a reference surface, we propose
an iterative scheme that alternates between flow field computation
and surface adjustment.

Flow field computation At each iteration of our method, we first
compute the flow field using the current surface as a reference (Sec-
tions 5.1, 5.2). Since we a priori do not know whether a flow
line describes the maximal or minimal curvature direction on the
imagined surface, we separate the flow field direction and magni-
tude estimation steps and allow these choices to naturally emerge
from our flow field computation. We compute the directions using
four-symmetry fields on the current reference surface, resulting in
a smooth direction field well aligned with the flow lines. We then
compute the magnitudes of each of the tensor vectors. Since the
computed field is expected to serve as a target curvature field for the
adjusted surface, we formulate the magnitude computation to satisfy
known curvature field constraints with respect to the reference field
in a least-squares sense. We optimize the field to be fair, namely
exhibiting small variation.

Surface adaptation and remeshing We optimize the mesh sur-
face so that its curvature tensor conforms to the flow field (Section
5.3). Our flow-field computation requires the underlying mesh to be
a suitable discretization of a smooth reference surface. Thus, after
each adaptation step, we remesh the surface using local mesh updates
(Section 5.4) to improve triangle shape and equalize edge lengths.

5.1 Flow Field Direction Computation

Our target flow field is expected to change smoothly across the
surface S, and to be aligned with the flow-line directions at patch
boundaries. As the patch boundaries are discretized as triangle edges,
and we would like our flow field to obey these edge directions, we
define the flow field discretely across our mesh per mesh facet, rather
than on mesh vertices. We represent the flow field directions as a pair
of right-handed orthogonal unit vectors u and v. Since the field is
orthogonal, we encode the directions of the field at a point x ∈ S via
θ(x), the angle of u in the 2D local coordinate frame of the tangent
plane of S at x. Following the 4-symmetry field definition [Ray et al.
2008], the smoothness of the direction field is measured by summing
the angle differences between the field directions across adjacent
facets: Esmooth ,

∑
eij

(θi + rij + pijπ/2− θj)2, where θi and
θj are the angles of the field directions in the local frames of the
adjacent facets fi and fj , rij is the rotation angle between the local
frames i and j, and pij is an integer denoting the multiple of local
frame rotation by π/2. For each cycle lj , the field is constrained
to be aligned with the directions of the bounding flow-line curves.
Specifically for each mesh facet adjacent to a flow-line curve we
constrain its field direction to be aligned with the direction of that
curve; if a corner facet is adjacent to two flow-line curves, we split
the facet (and its opposite facet) using the bisector of the corner
angle. The smooth direction field over the surface is obtained by
minimizing Esmooth subject to the alignment constraints. Since the
rotation coefficients pij are required to be integers, we use a mixed-
integer solver [Bommes et al. 2009] to compute the symmetry field
(Figure 2(c)). Since the alignment with flow lines is the dominant
constraint of our framework, we use hard constraints to enforce it,
differing from approaches such as [Ray et al. 2006; Knöppel et al.
2013] that treat direction alignment as a soft constraint.

5.2 Flow Field Magnitude Computation

We define the flow field 2× 2 tensor such that its two eigenvectors
are in the directions of the computed u and v and compute their cor-
responding eigenvalues, or magnitudes, λ1 and λ2 as described next.



We denote this tensor by IIc(λ(x), θ(x)), where λ(x) = (λ1, λ2).
We search for λi that best align the flow-field magnitudes with the
curvature field of the current surface. This choice is motivated by
the observation that while we aim for the target surface curvature
directions to be aligned with the flow lines, we also wish to minimize
the amount of surface adjustment performed at each step in order
to converge to a local minimum. When the surface and the direc-
tions u,v are fixed, the optimization problem of Eqn. 1 is reduced
to minλ

∫
S
‖II(λ(x), θ(x))− IIx‖2 dx. Discretizing this objective

function on the mesh we have
∑
t |t| · ‖II(λ(t), θ(t)) − II(t)‖2.

Here II(t) denotes the curvature tensor on triangle t. Using this
formulation, one can compute λ by first estimating II(t) explicitly,
and then solving the least square problem ‖II(λ(t), θ(t))− II(t)‖2
per triangle. A common way to estimate face curvature tensor II(t)
is averaging vertex curvature tensors computed from any mesh cur-
vature estimation method. However, such estimation is not efficient
especially for our iterative scheme. Hence for efficiency and simplic-
ity, we take an implicit approach to compute II(λ(t), θ(t)) directly
by fitting the flow tensor II(λ(t), θ(t)) according to the local surface
geometry.

For a triangle t, we define its local orthonormal frame as u,v,n ∈
R3 where u,v are the 3D unit directions from the flow field. Let J =
[u|v]; the 2×2 shape operator matrix is S = JT (Dn)J [Do Carmo
1976] whereDn is the derivative matrix of n. As we aim for the flow
tensor to be close to a surface curvature tensor, the shape operator
should have a form S = diag(λ1, λ2) ideally and we have

Dn = J diag(λ1, λ2) JT . (2)

The rate of change of n on a specified tangent direction x is given
by the direction derivative r = (Dn)x. By estimating r and x, we
can estimate Dn. Assume t has an adjacent triangle ti with normal
ni. Denote the circumcenter of t and ti as c and ci, we project the
vector ci − c =: di on the facet t: di − (di · n)n =: xi. The xi
thus defined are orthogonal to the corresponding triangle’s edges
and their length reflects the sizes of the triangles. We define the
difference of normals between the triangles t and ti as ri = ni − n.
We expect to have

ri = (Dn)xi. (3)

By substituting Eqn. 2 into Eqn. 3, we have ri =
J diag(λ1, λ2) JT xi. We multiply xTi on both sides of the above
equation:

xi · ri = (JTxi)
T diag(λ1, λ2) (JTxi) (4)

Since t has three neighbors in general, we can solve a least square
problem to determine λ1 and λ2. When there are less than two
neighbor facets for a corner facet, the system is underdetermined;
again we avoid this scenario by splitting the facet (and its opposite
facet) using the bisector of the corner angle.

ui

vi uj

vj

dijdijdijdijdijdijdijdijdijdijdijdijdijdijdijdijdij

Curvature variation control The mag-
nitude computation in Eqn. 4 is purely
local, and as such can lead to undesirably
large field magnitude variation between
adjacent facets. Inspired by curvature vari-
ation minimization for fair surface modeling [Joshi and Séquin
2007], given the flow field II(λ, θ), we define the flow field variation
as the sum of differences of λi = (λi1, λi2) and λj = (λj1, λj2)
for every pair of adjacent facets fi and fj sharing an edge eij , i.e.

Eλ =
∑
ij

‖wij ◦ (λi − ρijλj) ‖2,

(a) (b) (c)

Figure 4: (a) Initial surface with boundary curve taken from a torus.
(b) The surface computed with no curvature variation control, i.e.
t = 0. (c) The surface computed with t = 0.9 is much closer to a
toroidal surface than (b). Recall that a torus has vanishing curvature
variation.

where ρij is a 2× 2 permutation matrix that matches the flow field
directions in facet fj to the corresponding directions on facet fi,
wij is a vector of weights measuring the degree to which the facet
pair matches their flow field directions, and the operator ◦ means
entry-wise vector multiplication. To be specific, ρij is derived from
the integer period jump value pij of the edge in the cross field
computation step (Sec.5.1):

ρij =

(
1− s s
s 1− s

)
where s := |pij | mod 2. The weight vector is set to

wij =
1

2‖dij‖

(∣∣∣∣(utivti
)
dij

∣∣∣∣+

∣∣∣∣ρij (utjvtj
)
dij

∣∣∣∣) ,
where (u,v) are the flow field directions and dij is the dual edge
connecting circumcenters of the two facets (see inset). We formulate
the complete curvature variation control problem as

min
λ

tEλ + (1− t)Ec,

where

Ec =
∑
i

∥∥∥∥∥
(

1

2

∑
j∼i

wij

)
◦
(
λi − λoldi

)∥∥∥∥∥
2

penalizes the deviation of flow field magnitudes from the original
values, and t ∈ [0, 1) controls the weight of smoothness. This is
a quadratic problem whose optimal solution is found by solving a
system of linear equations.

We show the effects of curvature variation control in Fig. 4. A larger
value of the parameter t implies stronger requirement for curvature
smoothness (cyclides have zero curvature variation [Joshi and Séquin
2007]); in most of the examples, we set t = 0.3 providing a fair
control of curvature smoothness. Note that if no curvature value is
constrained and t = 1, a trivial solution is to assign zero flow field
magnitude to all facets.

5.3 Surface Adaptation

Once the flow field is computed, we adapt the surface to better
align its curvature field with the flow field. We avoid solving
minS

∫
S
‖II(λ(x), θ(x))− IIx‖2 dx directly, as even the estima-

tion of curvature tensor on mesh facets results in a non-linear func-
tion of the vertex positions. Thus, instead of minimizing the dif-
ference between the flow tensor and the curvature tensor on mesh
facets, we minimize the tensor difference on mesh edges.

We recall that the discrete mean-curvature normal He along each
mesh edge e, shared by triangles4pipjpk and4pipjpl , is defined
as [Sullivan 2008]

He = cot∠pkpipj(pk − pj) + cot∠pkpjpi(pk − pi)

+ cot∠plpipj(pl − pj) + cot∠plpjpi(pl − pi).



The magnitude of He is the mean curvature along e, and is equal to
|He| = 2‖e‖ sin β

2
[Sullivan 2008], where β is the dihedral angle

between the facets fi and fj adjacent to e.
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Assume we have the differential
quantities defined for fi and fj ,
i.e., the tangent vectors xij and
xji on the planes of fi and fj
respectively, the normal differences
rij = nj − ni and rji and the local
frames Ji and Jj . We also recall
that the normal difference projected
on the two adjacent facets fi and fj , i.e. xij · rij/‖xij‖ and
xji · rji/‖xji‖, have a signed length of sinβ (see inset). Given
the flow tensors IIi and IIj and treating them as target curvature
tensors, the target values for the signed lengths of the projected
normal difference are sinβi = (JTi xij)

T IIi(JTi xij)/‖xij‖ and
sinβj = (JTj xji)

T IIj(JTj xji)/‖xji‖. By averaging sinβi and
sinβj which may not be equal, we obtain the sine of the target
dihedral angle sin β̂ =

sin βi+sin βj
2

, which in turn defines a target

edge mean curvature |Ĥe| = 2‖e‖ sin β̂
2

. Note that in general there
is an ambiguity in computing the angle β̂ from its sine function
sin β̂ or sin β̂

2
, but in our context we may assume β ∈ [−π/2, π/2];

in other words, our surface is sufficiently smooth and no dihedral
angle exceeds π/2, eliminating the ambiguity.

Based on the above analysis, we now express the goal of curvature
tensor alignment in terms of mean-curvature normals along the
mesh edges.

min
S
fcurv =

∑
e

‖He − |Ĥe| · v‖2. (5)

Here v is the direction of Ĥe. In general, as we aim for a local
minimum close to the current surface, we use the mean-curvature
normal direction computed on the current mesh as this target
direction. Note that when Eqn. 5 vanishes, the curvature tensor of
the surface is identical to the flow field, because the edges have the
same curvatures as dictated by the flow field. We fix the cotangent
weights and set v to the current direction of He; the objective
function is then a quadratic convex function, requiring a simple
linear solver to update the vertex positions.

Boundary Conditions. In addition to optimizing the alignment
between curvature directions and the flow field over the surface,
we also use two types of boundary conditions to align the surface
with the semantics of the input curve network. We align the surface
normals with the curve normals along the flow lines computed using
rotation-minimizing frames, and we enforce inter-patch smoothness
across smooth transition curves.

Normal vectors along flow-line curves. The normal vectors along
flow-line curves computed using rotation-minimizing frames (Sec-
tion 4) are consistent with the requirements for these curves to serve
as principal curvature lines; as such, they provide critical normal
information about the target surface. It is therefore desirable to align
the surface normal vectors with these normal vectors. We do this by
introducing a new term into the objective function (Eqn. 5), which
dictates that the edges of a facet i adjacent to a flow line through its
edge pi1pi2 should be perpendicular to the RMF normal vector ni
of the flow line at the middle point of pi1pi2,

fnormal =
∑
i

‖nti(pi0 − pi1)‖2 + ‖nti(pi0 − pi2)‖2.

Here the vertex pi0 is not on the curve and therefore free to move,
while pi1 and pi2 are fixed.

(a) (b)

Figure 5: (a) The surface before fairing. (b) The surface after
fairing. Note how the bumps are smoothed out after fairing.

Inter-patch Smoothness. For each smooth transition curve between
two patches (see Section 4), we optimize smoothness across the
curve by penalizing the curvature of the surface across the curve. We
formulate this condition as the following term to be incorporated into
the objective function (Eqn. 5): fsmooth =

∑
ec
‖Hec‖2, where ec

is an edge on the smooth transition curve. Note that the mean
curvature Hec is the only discrete curvature of the surface across the
curve at ec, as its Gaussian curvature at the edge is zero.

At each surface update step we optimize fcurv+fnormal+fsmooth.
The optimization problem is quadratic since the RMF normal vectors
are precomputed for each curve.

5.4 Remeshing

Surface adaption may introduce poorly-shaped and unevenly sized
triangles. We use standard local remeshing operations to improve
mesh quality and optimize sizing. For each surface patch, we op-
timize the sizing by first splitting all edges longer than 5 times the
average edge length, and then redistributing mesh vertices using sev-
eral iterations of Laplacian smoothing, constraining mesh vertices to
remain on the surface. Vertices on patch boundaries are constrained
to remain on the input curves, and corner vertices remain fixed. We
then use edge flips to make the surface mesh a Delaunay mesh [Dyer
et al. 2007], while keeping input curve edges fixed. Constrained
edges that violate the Delaunay criterion are split at their midpoints,
and a second edge flipping pass is performed.

The surfaces obtained from our flow-field alignment optimization
are typically fair and smooth, but can exhibit undesirable undulations
due to the local nature of the optimization. Therefore, as an optional
post-process we perform one pass of Laplacian regularization with
surface deviation penalization to improve the fairness (see Fig. 5).

6 Results and Discussion

We evaluate our method both qualitatively and quantitatively.
Throughout the paper we showcase a range of results (Figures 1,2,15)
highlighting the flow alignment, smoothness, and visual appeal of
our created surfaces.

Optimization process We terminate the process when the aver-
age movement of vertices between iterations is less than 0.1% of the
bounding box diagonal. Although we do not have a theoretical guar-
antee that the algorithm converges, in practice it terminates on all
tested input in 10-12 iterations at most. Figure 6 shows a sequence
of intermediate surfaces computed by our method and visualizes the
difference between our flow-field directions and estimated principal
curvature directions on the surface (computed using the method
of [Rusinkiewicz 2004]). To avoid measuring umbilical regions we
scale the angle by |κmax−κmin|/(|κmax|+ |κmin|), where κmax
and κmin are the two estimated principal curvature values. When



Figure 6: Iterative alignment, starting from the input surface, and
visualizing results after 3, 6, 9 and 12 iterations respectively. Color
encodes the difference between the directions of flow field and the
current estimated surface curvature directions.

Figure 7: Comparison with [Zou et al. 2013; Zhuang et al. 2013].
On the left are their results, while on the right are our results taking
their surfaces as input. Our method more accurately captures the
designer intent of the input curve networks.

|κmax|+ |κmin| ≈ 0, meaning the surface is almost planar, we set
the difference angle to zero. Our algorithm reduces the difference
between the flow-field directions and the estimated surface principal
curvature directions in just a few iterations.

Comparisons We compare our surfacing results to a range of
alternatives. Our algorithm uses surfaces created by the method of
Zhuang et al. [2013] as a starting point for optimization (Figures 1,
2 and 7). Their framework is based on a combination of surfacing
approaches proposed by Zou et al. [2013] and Andrews et al [2011].
While smoothly interpolating the curves, these surfaces frequently
fail to capture the artist’s intent and do not naturally align with the
flow-line network curves. Our method successfully creates flow-
aligned surfaces starting from such inputs.

Bessmeltsev et al. [2012] use a discrete curve cycle surfacing
approach based on discrete boundary segment pairing. The pairing
is based on local curve-based criteria, and can lead to unnatural
results on complex curve cycles (Fig. 8). Note especially the
roadster model (right) where a faulty curve pairing results in a
garbled surface. Our framework does not depend on discrete
matching and successfully surfaces inputs where their method fails.
In addition, for each four sided patch they use Coons interpolation

Figure 8: Comparison with [Bessmeltsev et al. 2012]. Their method
fails on these two curve networks with highly curved and complex
curves (top row); our method finds proper surfaces (bottom row).

(a) (b) (c) (d)

Figure 9: Surfacing a curve network taken from a vase-like revolved
surface. (a) the input curve network; (b) the ground truth revolved
surface; (c) result of Coons interpolation; (d) our result. The high-
lights and silhouettes show our result is much closer to the ground
truth. The errors from the ground truth with a unit diagonal length
are: (c) max error 0.045, average error 0.010, (d) max error 0.002,
average error 0.00035.

which does not necessarily follow the given curvature directions.
Fig. 9 shows a comparison with Coons patches where our method
more faithfully recovers a revolved surface.

Schneider and Kobbelt [2001] and Nealen et al. [2007] surface curve
networks using bi-harmonic surfaces. These surfaces are constructed
by diffusing scalar mean curvature values isotropically and adapting
the surface to conform with these values . While bi-harmonic sur-
faces are fair and flexible, they do not support curvature direction
alignment. In contrast, our method propagates the directions of flow
lines through the flow field, and adapts the surface to match its cur-
vature directions to the flow field. Fig. 10 shows an example where a
bi-harmonic surface with isothermal distribution of mean curvatures
clearly does not match the design intention of the input curves, while
our method finds the right surface. To compute the bi-harmonic
surface, we use the RMF normal constraints at boundary curves (see
Section 4).

We take additional analytic surfaces as ground truth and their cur-
vature lines as the input curve networks. Our algorithm’s output
closely corresponds to the ground-truth surfaces. For example, we
test against a torus patch in Fig. 11; another example of an ellipsoid
is shown in Fig. 12.



(a) (b) (c)

Figure 10: Surfacing a three-sided curve cycle. (a) the input curve
network; (b) the bi-harmonic surface computed by [Schneider and
Kobbelt 2001]; (c) our result. Note the bi-harmonic surface does
not capture the curvature directions of the input curves.

(a) (b)

Figure 11: Surface alignment example. (a) input minimal surface;
(b) adapted surface, after 10 iterations. The principal directions,
scaled by principal curvatures, are shown as crosses over the sur-
faces. These directions are well aligned with the boundaries after
processing. The maximum distance from vertices of the adapted
surface to the ground truth torus surface is less than 1% of the
bounding box diagonal.

Figure 12: We surface a curve network taken from an ellipsoid as
ground truth. The color shows the error from each vertex of the
surface to the exact ellipsoid surface. The maximum error is 0.005,
while the three diameters of the ellipsoid are 0.6, 1.0 and 0.47.

Comparison with Artist Design. We also compare the output of
our method with an artist’s manually created surfacing of the Boat
curve network, shown in Fig. 13. Our method computes a surface
very similar to the artist’s design.

Runtimes. Each iteration of our algorithm consists of four key
steps: a mixed-integer solver for the smooth direction-field, a linear
solver for computing the flow-field magnitudes and surface adjust-
ment, and a remeshing stage. The most time-consuming step is
the direction field computation. The runtime breakdown for each
iteration on a typical model with 12k vertices is: 0.4 seconds for
direction-field computation, 0.26 seconds for field magnitude com-
putation and vertex update, and 0.015 seconds for remeshing (times
computed using a single-thread implementation on a 3.16 GHz CPU).
The number of iterations depends on the deviation of the input sur-
face from the desired solution. For the large examples shown in this
paper, the framework converges in 10 to 12 iterations. We provide a
set of mesh files for reference in the supplemental materials.

Limitations. Our algorithm’s output depends on the initial surface.
For example, as shown in Fig. 14, if the principal curvature directions
of the input surface are a priori aligned with the input curves, the

(a) Artist’s design (b) Our result

Figure 13: Our algorithmically computed target surface (right)
is very close to one manually created by an artist (left). Note in
particular the matching highlights and silhouettes.

Figure 14: Left to right: a revolved surface interpolating two input
circular boundary curves; the new curve network with two additional
profile curves; the resulting cylindrical surface.

method will immediately terminate, independent of the exact surface
shape. In this scenario, users can add more curves to clarify their
intent; for instance, by adding side curves to generate a cylindrical
surface. Our framework depends on existing methods for finding
cycles in a curve network. As these methods currently do not handle
floating or open curves, we do not support them either.

7 Conclusion

We presented a new method for surfacing curve networks that suc-
cessfully aligns the principal curvature directions of the resulting
surfaces with flow-line network curves, effectively conveying the
intention of the original designs. We explicitly formulate this align-
ment goal in differential terms, and propose an iterative method that
gradually adapts the input surface to satisfy our requirements. Our
method generates smooth, flow-line aligned surfaces which conform
with artist expectations and viewer perception.

While our framework works well in practice, it would be interesting
to research its convergence behaviour and to develop theoretical
guarantees on the properties of the final surfaces that it converges
to. While we represent the output surfaces using triangular meshes,
it is well known (e.g. [Bessmeltsev et al. 2012]) that artists and
designers prefer quad-dominant representations where the mesh
edges are aligned with principal curvature directions. It would be
interesting to investigate if such meshes can be directly generated
by our scheme, rather than by post-process remeshing techniques.
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Figure 15: Surfacing various curve networks. Left to right: input curve network, output surface, direction and principal curvature direction
fields.
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