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Structure-Driven Unsupervised Domain
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Abstract— Performance degradation due to domain shift
remains a major challenge in medical image analysis.
Unsupervised domain adaptation that transfers knowledge
learned from the source domain with ground truth labels to
the target domain without any annotation is the mainstream
solution to resolve this issue. In this paper, we present
a novel unsupervised domain adaptation framework for
cross-modality cardiac segmentation, by explicitly captur-
ing a common cardiac structure embedded across different
modalities to guide cardiac segmentation. In particular,
we first extract a set of 3D landmarks, in a self-supervised
manner, to represent the cardiac structure of different
modalities. The high-level structure information is then
combined with another complementary feature, the Canny
edges, to produce accurate cardiac segmentation results
both in the source and target domains. We extensively
evaluate our method on the MICCAI 2017 MM-WHS dataset
for cardiac segmentation. The evaluation, comparison
and comprehensive ablation studies demonstrate that our
approach achieves satisfactory segmentation results and
outperforms state-of-the-art unsupervised domain adapta-
tion methods by a significant margin.

Index Terms— Cross-modality learning, unsupervised
domain adaptation, structure distillation, cardiac
segmentation.
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|. INTRODUCTION

ITH the recent development of deep learning tech-
Wniques, great success has been achieved on various
challenging tasks in medical image analysis, such as seg-
mentation, detection and diagnosis [1]-[3], reaching even
human-level performances when testing samples are collected
following the same distribution as training data. However,
generalizing a well-trained model to new domains is difficult
due to the domain shift. It is a common issue especially
when applying the trained model to real-world clinical sce-
narios, since medical images are usually captured with dif-
ferent physical properties. For example, Magnetic Resonance
Imaging (MRI) and Computed Tomography (CT) images of
cardiac play complementary roles in clinical diagnosis, while
they have significantly different appearances as shown in
Fig. 1. Considering the tedious and expensive annotation
by experienced experts, unsupervised domain adaptation that
transfers knowledge from a source domain to a target one is
an appealing yet challenging solution to the problem.

Previous work tackle this problem by using Generative
Adversarial Networks (GANs) [4] to align either the image
appearances (e.g., [5], [6]) or their latent features (e.g., [7], [8])
to achieve unsupervised domain adaptation in medical image
analysis. The former manipulates the image appearance in the
target domain to have a similar style with those from the source
domain, while the latter learns to extract the domain invariant
latent features. We argue that since medical images of different
modalities have significantly different appearances (see CT
and MRI as shown in Fig. 1), simply manipulating the styles
or latent features of images may not guarantee good domain
adaptation results. Furthermore, however, medical images of
different modalities are captured to reveal the same anatomical
structures, thus explicitly constraining the neural models with
respect to such common anatomical structures across images
of different modalities may benefit the domain adaptation.
While the definition of such anatomical structures vary across
tasks and is not available for most of medical image datasets,
this observation motivates the following design.

We propose a deep neural model that learns and leverages
the consistent structure in human-body anatomy as high-level
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Fig. 1. Overview of our unsupervised domain adaptation method on car-
diac MRl and CT images. The example shows MRI (source) to CT (target)
adaptation. Specifically, our method aims to extract the cardiac structure
across modalities by a set of landmarks, while accurately predict object
labels in the target domain guided by the domain-invariant structural
landmarks and edge information.

guidance for downstream tasks. Specifically, inspired by the
unsupervised discovery from faces [9] and human bodies [10]
representing the object geometry without manual annotation,
we describe the consistent structure embedded in different
modality images as a set of 3D keypoints. This formulation
requires no supervision from human-annotated landmark coor-
dinates, and the network can discover consistent 3D keypoints
across images of different modalities in a self-supervised
manner.

In this paper, we showcase this novel structure-driven
approach to domain adaptation for unsupervised cross-
modality cardiac segmentation. The proposed framework con-
sists of two core modules, the unsupervised 3D landmark
discovery module and the cardiac segmentation module. The
first module is designed to capture the explicit structural
representation shared across modalities, while the second
is designed to obtain the accurate object labels guided
by the domain-invariant anatomical structure. Specifically,
to extract a consistent structure represented by 3D land-
marks, we resort to using a conditional image generation
mechanism that aims to reconstruct the target image by the
landmarks extracted from itself and the appearance from its
deformed version. The deformed image is randomly distorted
from the source image so as to have the same appear-
ance but a deformed structure. In order to delineate accu-
rate organ boundaries, we further incorporate in the seg-
mentation module the low-level Canny edges [11] as the
complementary features in addition to the domain invariant
3D landmarks that serves as high-level structure information
of the content. Furthermore, to preserve the domain con-
sistency in landmark generation and edge extraction steps,
we exploit adversarial training in the end-to-end learning
framework.

Our main contributions are summarized as follows:

« We present a novel unsupervised domain adaptation
approach based on the learned domain invariant structure
which plays an essential role to address the severe domain
shift problem.

o We distill the 3D landmarks from source and target
domains by unsupervised conditional image generation,

and incorporate Canny edges as hybrid information to
generate accurate segmentation results.

« Extensive experiments on the dataset of MM-WHS chal-
lenge [12] demonstrate that our approach achieves state-
of-the-art performance of bidirectional domain adaptation
between MR and CT images.

Il. RELATED WORK
A. Unsupervised Domain Adaption

Domain adaptation is an important research field to
solve performance degradation caused by inter-scanner or
cross-modality variations in medical image analysis [13]-[16].
Many deep learning-based methods [7], [17]-[19] have been
proposed to transfer the knowledge learned from the source
domain to the target domain in a supervised or unsupervised
way. However, unsupervised domain adaptation without target
domain labels is more desirable and related to our work,
we focus on this category in the following.

With the current advances of deep learning techniques,
plenty works adopt adversarial learning [4], [5] to address the
domain shift problem. They can be mainly divided into three
categories: feature-level alignment [7], [20]-[25], image-level
alignment [5], [6], [26]-[29] and their mixtures [19],
[30]-[32]. Feature-level alignment aims to extract domain-
invariant features from source and target images. For exam-
ple, Tzeng et al. [8] apply a discriminator to distinguish
the features across modalities via adversarial learning.
Kamnitsas et al. [33] propose a multi-connected domain
discriminator to improve the feature alignment in brain
lesion segmentation. Similar works [7], [20]-[25] align the
cross-modality features extracted from either semantic seg-
mentation space or image space, demonstrating more effective
feature-level alignment.

Following the success of CycleGAN [5] on image-to-image
translation tasks, [6], [26]-[29] align image appearance across
modalities by translating the image style from the source
domain to target domain. For instance, Jiang ef al. [28] present
a tumor-aware unsupervised domain adaptation network to
transform CT images to MRI images for lung cancer seg-
mentation. Although alignments on feature or image level
achieve promising results in unsupervised domain adaptation,
the combination of these two techniques exhibits favorable
performance [19], [30]-[32]. In particular, Chen et al. [19],
[30] conduct synergistic alignment of domains to perform
bidirectional unsupervised domain adaptation between cardiac
CT and MRI images, which aligns both image appearance and
latent features and achieves leading performance.

Although several style or latent feature adaptation methods
have already achieved good performance, there is still a
large performance gap for such kinds of methods reaching
a promising result in the specific cardiac segmentation task.
We argue that the extracted domain-invariant style or latent
features of images are implicit, and it is hard to tell exactly
what the network has learned. Instead, medical images of
different modalities are scanned to reveal the same anatom-
ical structures, explicitly detecting the common anatomical
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Fig. 2. The framework of our method for unsupervised domain adaptation. The landmark detection module first extracts the anatomical cardiac
structure represented by a set of 3D landmarks. The disentangle process is achieved by the conditional image generation mechanism. Then,
the segmentation module takes as input both the extracted structure and a set of edges from the canny operator to produce reliable results.

structure with clear meaning, e.g., the left corner point of
the left atrium blood cavity, is more practical in the cardiac
segmentation task of different modalities.

Recently, domain-invariant information disentanglement has
attracted many research attention for unsupervised domain
adaptation [34]-[40]. These methods distill most informative
and decisive factors across domains, which is less affected by
domain specific information in semantic segmentation, e.g.,
image textures. For example, Chang et al. [34] learn structural
contents for image translation from synthetic to real-world
driving scenes. We share a similar idea with these meth-
ods but have significant differences, i.e., in medical images,
the anatomical structures of human-bodies are consistent in
different image modalities. Thus, we explicitly use a set of
spatial points, instead of latent features or image appearances,
to represent the organ geometric structures across domains,
which better preserves the domain-invariant property.

B. Cross-Modality Cardiac Segmentation

Cardiac MRI and CT images play complementary roles
for heart disease diagnosis [41] in real-world clinics. MRI
is a gold standard to evaluate the cardiac function, where
CT images is an effective indicator for atherosclerosis or
coronary artery disease. Recently, with the development of
deep learning techniques, more attention has been drawn

to cross-modality learning of cardiac MRI and CT images.
Dou et al. [7] and Chen et al. [19] propose a stream of
unsupervised cardiac segmentation networks based on feature-
or image-level alignment. Bian et al. [42] boost the segmen-
tation performance using an uncertain-aware attention module
emphasizing cardiac boundaries. In addition, Li et al. [43]
present the mutual knowledge distillation scheme to exploit
the shared knowledge between cardiac MRI and CT images,
while Dou et al. [44] share the similar idea by improving
network parameter efficiency and proposing a new knowledge
distillation loss term.

I1l. METHOD

Fig. 2 shows an overview of our unsupervised domain adap-
tation framework for cardiac segmentation. It is composed of
two main modules, i.e., the unsupervised landmark detection
module and the structure-driven segmentation module. The
former aims to discover a set of 3D landmarks that reflect
the shared structure across different modalities of cardiac
images while the later is designed to obtain the final cardiac
segmentation results.

A. Unsupervised Landmark Detection

While most of previous works rely on the implicit alignment
to achieve domain adaptation, we propose to leverage an
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ordered set of explicitly learned 3D landmarks that are shared
across modalities to transfer the knowledge across domains.
Such points are learned in a self-supervised manner without
human definition, but they can represent the cardiac structure
with consistent anatomical locations among different images,
as well as across modalities.

We formulate this problem as conditional image generation,
following the previous works [10], [45] on facial landmark
localization, by treating the learned structural landmarks as
the generation condition, or high-level guidance. Specifically,
we build an image pair (x°, x') by applying two random
geometric deformations to image x. This derives a pair of
images sharing the same visual appearance but with deformed
geometric structures. Then a decoder is employed to recon-
struct image x!, so that the generated image x!" shares the
same appearance style with xo (by taking x¢ as style input)
while retaining the structure of x; (by taking its landmarks).
This enables the network to learn the 3D structural landmarks
by disentangling the structure from the appearance in an
self-supervised manner. In the following, we elaborate our
approach to achieve the proposed design.

1) Image Pairs Building: We first preprocess input images
from the source or target domains to build a pair of deformed
images. Formally, the input images X consist of labelled
data {X;} from the source domain with corresponding labels
{Ls}, and unlabelled data {X;} from the target domain. For
each image x € X, we generate a data pair (x% x!) =
(go(x), g1(x)) by applying two random 3D thin-plate-spline
(TPS) geometric deformations go and g; as shown in Fig. 2.
Thus, the paired images x° and x! hold the same appearance
style but different geometric structures [10], [46], [47]. The
image pairs are then used as input for the unsupervised land-
mark detection module to extract 3D landmarks consistently
across the source and target domains.

2) 3D Landmark Detector: The 3D landmark detector takes
as input an image x' from the source or target domain and
outputs K consistent landmarks to represent the underlying
structure. In particular, a standard convolutional neural net-
work, E”, is employed to encode the input image x' (a
source or target domain image) into a K-channel feature
map FH*WxDxK yhere each channel F(k) (k =1,...,K)
is then converted into a probability map M (k)7*W*xP by
channel-wise softmax normalization. To generate the 3D
landmarks and ensure the step is differentiable for back-
propagation, we use the soft-argmax operator [48] on the k-th
probability map M (k) to generate a weighted sum coordinate
c*(k) € R3 as the k-th landmark, defined as:

exp(F. (k)

c k) = . 1
Me®) = S exp(Fe®) M
(k)= D - Mc(k), )

CEQk

where ¢ € Qy denotes the spatial coordinates, and F, (k) is the
feature value of the coordinate c referencing to the k-th feature
map F(k), while M. (k) is the weight (i.e., the probability
value) of coordinate ¢ over all the other coordinates in the k-th
probability map M (k). We then convert the 3D coordinates of
the detected landmarks {c*} to K Gaussian maps Y (k)7 >*WxD

centered at ¢*(k) with a small fixed standard deviation o,
defined as:

Yo(k) = exp (—20% e —c*(k) ||2) , 3)

where the standard deviation ¢ is set to 0.8 for all the
experiments. The rationale behind this design is two-fold: on
the one hand, using a Gaussian map image to represent a
landmark is more conducive than a vector of real numbers
(the landmark coordinates), in the meanwhile it is easy to be
plugged into the internal features without further Fc layers;
on the other, using the probability maps M (k) directly may
introduce appearance information to the landmark detection
process, which we desire to factor out. Thus, representing
the learned 3D landmarks by Gaussian maps centered at the
landmark coordinate shall retain the structural information
learned from image x! with a dense signal while minimizing
the effect of image appearance, leading to a disentangled
representation. Note here, each map in F, M and Y, has the
same size of HxWxD, which is smaller than the input and
output image size, due to the existence of the encoder.

As the networks accept input from both domains, the para-
meters of the 3D landmark detector are shared to ensure
the same landmark semantics across modalities (i.e. CT and
MRI). Additionally, to facilitate the same purpose we adopt
the adversarial learning strategy to align the feature maps
output by the encoder. Adversarial learning is achieved by
introducing an auxiliary discriminator D", as shown in Fig. 2
and is defined as:

£2d0 = Ex, [log (Dh (Eh(xsl)))]
+Ex, [log (1 — D" (Eh(xtl)))] , 4)

where Ey  refers to the expected value over all the source
domain images x,, and Ey, is the expected value over target
domain images x;.

3) Conditional Image Generation: To achieve the self-
supervised landmark learning, we adopt the conditional image
generation network (see Fig. 2) to reproduce image x' with
inputs of image x° and the structural landmarks Y distilled
from x!. Since the paired images (xo, xl) are generated from
the same image x with different geometric transformations,
using either the image x° or the landmark-based Gaussian
map Y should not be able to reproduce image x'. To this
end, the network has to utilize the visual appearance feature
of x° and combine it with the distilled structural information
of x! to reconstruct image x' faithfully. Considering the
different visual appearance embedded in the source and target
domain images, as shown in Fig. 2, different encoders E*, E’
and decoders D, D' are employed in the conditional image
generation process.

To supervise the landmark detection network, the voxel-
based mean squared error (MSE) between the generated image
and its ground truth image is minimized. It is worthy noting
that, in our segmentation scenario, to make the structural
landmark information only relevant to the cardiac region,
we discard the reconstruction error of the background region.
Specifically, for images from the source domain, we compute
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only the MSE loss over the foreground regions which are
masked by the ground truth labels of the cardiac regions,
denoted as L7,.. While for images from the target domain,
since the ground truth masks are not available, we instead
supervise the reconstruction error over the predicted car-
diac regions produced by the segmentor (introduced later in

Sec. III-B), denoted as L!

rec*

B. Structure-Driven Segmentation

With the learned structural landmarks, we further prepare
the low-level features as the complementary signals for the
segmentor, since these structural landmarks cannot accurately
determine the cardiac boundaries. Specifically, we apply the
Canny [11] operator to both source and target images to
acquire a wide range of edges in source and target images.
Although Canny edges remove most of the domain specific
visual information, we further add an discriminator D¢ to
encourage the encoder E€ to extract the domain invariant
feature. The adversarial loss is defined as:

L5, = Ex, [log (DC (E%Canny[xﬁ])))]

+Ey, [log (1 - D° (EC(Canny[x}])))] C6)

At last, the segmentor takes as input the high-level
domain-invariant structural feature (represented by landmark-
based Gaussian maps) and low-level features from Canny
edges (obtained from both source and target domain images),
to generate the final segmentation results. During the train-
ing phase, given that only the source domain is labeled,
the network is optimized by minimizing the voxel-wise cross
entropy loss L, on the source domain data, while the
forward segmentation results on target domain data is the final
prediction results in testing phase.

C. Learning Process

The end-to-end framework is trained by minimizing three
types of losses, including the reconstruction losses LY.
(source domain) and L!,. (target domain), the segmentation
loss L5, (source domain), and the adversarial losses EZ 4o and

“dv- The overall objective function is as follows:

Liotal = ﬁgeg + ﬁZdu + ‘cgdv + i(ﬁiec + ﬁiec)’ (6)

where 1 is a balancing weight that is empirically set to 10.0
in all the experiments. As for the number of landmarks in the
structure representation, we use K = 32 in the experiments
and thoroughly validate it in the discussion section.

In the testing stage, instead of building data pairs, the testing
image in the target domain directly goes through the 3D
landmark detector, and the distilled landmark-based Gaussian
maps are fed into the segmentor with corresponding Canny
edges to generate the final segmentation results (the data flow
is shown in Fig. 2 with green lines).

D. Network Configurations and Implementation Details

1) Network Backbone: The framework consists of 4
encoders { E", ES, E', E}, 3 decoders {G*, G, G} and 2 dis-
criminators {Dh, DC}, which are all built on the 3D convo-
lutional neural network. The detailed structure of the network

(£°,E E" E°) (@.6.6) (0" Dr)
Input(128x128x128,1) Input(16x16x16,256+K) Input(16x16x16,256)
+ ¥

’ Conv(3,16,1),BN,ReLU Deconv(3,256,1),BN,ReLU] [ Conv(3,256,2),BN, ]

LeakyReLU(0.2)

’ Conv(3,32,1),BN,ReLU

!

]

] Conv(3,256,1),BN,ReLU ]
’ Conv(3,64,2),BN,ReLU ]

]

v

[
l
[ Deconv(3,128,1),BN,ReLU ]
[

Conv(3,256,2),BN,
LeakyRelU(0.2)

’ Conv(3,64,1),BN,ReLU Conv(3,128,1),BN,ReLU ]

Conv(4,256,1),BN,
LeakyReLU(0.2)

’ Conv(3,128,2),BN,ReLU Deconv(3,64,2),BN,ReLU ]

Conv(3,64,1),BN,ReLU ] FC(256, 256),BN

l
[
LeakyReLU(0.2)
[
[ Conv(3,16,1),BN,ReLU ]
(G

Dropout(0.5)
oy 16 ]

[ Conv(1,1,1) l [ Conv(1,5,1) l ’ FC(256,1) ]
v
() (b) ©

Fig. 3. The network details of the encoders, decoders and discrim-
inators. “Input(a, ¢)” represents the size and channels of the input;
“Conv/Deconv(k, n, s)” denotes the convolutional or deconvolutional
layers with kernel size k x k x k, stride s and output channel n; “FC(n1,
n2)” represents the fully connected layer with input channel n1 and output
channel n2.

v

’ Conv(3,256,2),BN,ReLU

v

Deconv(3,32,2),BN,ReLU ]

]
’ Conv(3,128,1),BN,ReLU ]
l
]

’ Conv(3,256,1),BN,ReLU

[ Conv(1,256,1) ]

backbone is shown in Fig. 3. Note that the input of the
decoders has the size of (16 x 16x16) with (256+K) channels,
which is composed of 256 channels extracted by the encoders
and K landmark-based Gaussian maps. Meanwhile, the output
channel of the decoders {GS , G! } is 1 for reconstruction,
whereas G outputs 5 channels for cardiac segmentation, and
each of them represents the class probability of being certain
cardiac parts or the background.

2) Implementation Details: Our framework was implemented
in Python with PyTorch platform. In training phase, four
NVIDIA GTX 1080Ti GPUs are used to train the network
in parallel. We employ Adam optimizer with a fixed learning
rate of 1.0 x 1073, In total, we train the network for 40K
iterations (about 16 hours) and the discriminators (D", D€) are
optimized every 10 iterations as is common in GAN network
training.

IV. EXPERIMENTS
In this section, we evaluated our method on the public
dataset, compared it against state-of-the-art methods and con-
ducted comprehensive ablation studies to validate the effec-
tiveness and accuracy. All experiments are performed on a
machine with an Intel(R) Xeon(R) V4 1.9GHz CPU, 4 Nvidia
1080Ti GPUs, and 32GB RAM.

A. Dataset

The dataset used in this paper is the MICCAI
2017 Multi-Modality Whole Heart Segmentation (MM-WHS)
[12] dataset, where 20 MRI and 20 CT scans with ground
truth masks are provided for cardiac segmentation. Note
that the images across modalities are unpaired, i.e., they are
collected from different clinical sites and patients. In our
experiments, four cardiac structures including the ascending
aorta (AA), the left atrium blood cavity (LA-BC), the left
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ventricle blood cavity (LV-BC), and the myocardium of the
left ventricle (MYO) are adopted for the segmentation task.

As the CT and MR scans have different field of view,
we manually crop the original scans to cover the heart region
where we aim to segment, and resize all cropped scans with
the size of 128 x 128 x 128. Before inputting to the network,
each sample image is normalized to have zero mean and unit
variance in terms of the intensity value. We randomly split
20 target scans into two folds and perform the two-fold cross
validation. In each fold, 20 scans of the source domain and
10 scans of the target domain are used to train the network,
and the remaining 10 scans of the target domain are used for
testing.

Remark: The data split scheme is commonly used by the
state-of-the-art methods ( [19], [42], [49]), we thus follow
the same setup to do the fair evaluation and comparison.
However, there are extra 40 non-annotated target domain data
available in MM-WHS, which can be used for both training
and testing in our pipeline. We further provide these results in
the discussion section (Sec. V).

B. Experimental Settings and Evaluation Metrics

To conduct comprehensive analysis and comparisons,
we design eight experimental settings, implement and test
them on the MM-WHS dataset. For a fair comparison, in addi-
tion to the same datasets for training and testing, all the
3D version settings utilize the same backbone subnetworks,
including the feature encoder, decoder and the segmentor.

+ W/o domain adaptation (WoDA): applies the segmentor
learned on the source domain to the target domain without
domain adaptation, which achieves the lower bound per-
formance. Note here, WoDA only consists of the basic
encoder and decoder, without the landmark detection
module and the adversarial training component.

o Full supervision (FS): trains our framework on both
source and target domains with corresponding labels,
which obtains the upper bound performance.

« Feature adaptation (3D-ADDA): extends ADDA [8] to
the 3D version that aligns different modalities on feature
space.

« Image adaptation (3D-CycleGAN): extends CycleGAN
[5] to the 3D version that aligns different modalities on
image space.

« Feature and image adaptation (3D-CyCADA): extends
CyCADA [31] to the 3D version that aligns different
modalities on both feature and image spaces.

« Disentangled Representation (3D-DISE): extends DISE
[34] to the 3D version that distills the structure and texture
features to adapt from virtual to real-world scenes, e.g.
SYNTHIA [50].

o SIFA [19]: utilizes 2D neural network to conduct syner-
gistic alignment on both image and feature spaces.

o UESM [42]: designs an uncertainty-aware domain adap-
tation network to boost the segmentation performance on
highly uncertain regions.

To quantitatively evaluate the segmentation performance,

we exploit two common metrics, the Dice similarity coefficient

(Dice) and the average symmetric surface distance (ASD),
to measure the segmentation accuracy. Dice presents the
voxel-wise segmentation accuracy, while ASD calculates the
average surface distance between the predicted labels and its
corresponding ground truth labels in 3D space. Note that a
higher Dice value and a lower ASD value indicate higher
quality in cardiac segmentation results. We present the metrics
in the format of mean % std to show the average performance
as well as cross-subject variance.

C. Comparisons and Analysis

We evaluate our approach for bidirectional domain adap-
tation, i.e., from MRI to CT images and from CT to MRI
images, respectively. To have a better understanding of the
comparisons, we first establish the lower bound (WoDA) and
upper bound (FS) network configurations in each direction.
As shown in Table I, there are extreme performance degra-
dations between the lower and upper bound neural models
in both directions. Also pay attention to the extreme lower
performance of WoDA from both directions that comes from
the intrinsic domain gap between the two modalities. All these
observations provide clear evidence of the necessity to propose
unsupervised domain adaptation methods. Another interesting
observation is that the lower bound of the adaptation direction
from MRI to CT images has a significantly higher accuracy
compared to the inverse direction in terms of the Dice score
(64.9% vs. 38.1%). We hypothesize that it is due to the fact
that MRI images have a relatively limited intensity contrast
near the cardiac boundaries. The large intensity variation in
CT images makes transferring the knowledge to MRI images
more challenging, which is consistent to the performance of
fully supervised learning (89.8% vs. 84.0%) and other domain
adaptation methods ( [5], [8], [19], [31], [31], [34], [42]) in
both two adaptation directions.

To validate the effectiveness of our method, we compare
with different state-of-the-art unsupervised domain adaptation
approaches for natural images and the MM-WHS dataset.
The quantitative comparisons are presented in Table I. Our
method achieves the best performance in both directions
by a large margin over other unsupervised methods, which
shows the advantages of the anatomical structure represen-
tation in domain adaptation. In the meanwhile, 3D-ADDA
and 3D-CycleGAN gain noticeable improvements compared
to the model without domain adaptation (WoDA). Also,
3D-CycADA combining both feature- and image-level align-
ments further improves the segmentation performance over
methods relying on either of them. Importantly, compared
to 3D-DISE that distills structure and texture information in
feature space, our method achieves favorable performance
(8.2% and 9.6% improvements in terms of Dice score of
two adaptation directions), demonstrating the effectiveness of
our explicit structural landmarks to represent the human-body
anatomical structure.

SIFA and UESM are two state-of-the-art unsupervised
domain adaptation methods on the MM-WHS dataset. Note
that, to have a fair comparison, we implement their methods,
train and test them using our dataset split scheme, instead
of their reported versions where 16 target data is used for
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TABLE |
QUANTITATIVE RESULTS OF BIDIRECTIONAL DOMAIN ADAPTATION
MRI to CT
. Dice [%] T ASD [Voxel] |

Methods Dim AA LA-BC LV-BC MYO Mean AA LA-BC LV-BC MYO Mean
WoDA 3D | 63.644.2 61.8443 709434 633247 649442 | 163440 322467 17.0438  19.144.0 212449

FS 3D | 90.3+£14 90.1£15 91.1£15 867417 898415 | 24411 29413 24403  2.1407 25408
3D-ADDA [3] 3D | 684129 660L132 759125 632136 683120 | 11.4+X3.1 19.7£39 13.0122 145127 14.6E3.1
3D-CycleGAN [5] | 3D | 60.943.1 708422 73.642.0 63.14£24 67.142.4 | 172435 114425 9.0425  6.6+3.1  11.0£29
3D-CyCADA [32] | 3D | 720424 76.5+1.8 74.0+1.9 617222 711421 | 72421 68419  93+15 60424  7.3£20
3D-DISE [35] 3D | 812419 80.1£15 78518 70.622.1 77.6418 | 7.040.7 65405 75426 65418 69417
SIFA [19] 2D | 764124 755E19 79.042.0 565425 719422 | 112433 67425 56438 09120 84130
UESM [43] 2D | 82.14£2.0 87.0+£1.7 83.6:1.7 684418 803%18 | 42413  53+13  414+14 45413 45413
Ours 3D | 87.951.7 88.1L15 884L1.7 78.742.0 858%16 | 3.840.6 33112 3.1L11.2 34112 34110

CT to MRI
. Dice [%] 1 ASD [Voxel] |

Methods Dim AA LA-BC LV-BC MYO Mean AA LA-BC LV-BC MYO Mean
WoDA 3D | 22.545.6 395446 552425 3534501 38.1445 | 25.144.8 179439 159450 10.6+42 174444

FS 3D | 777420 826416 936415 821418 840417 | L7101 22412 20405 16402  1.9408
3D-ADDA [8] 3D | 332145 446%39 749E30 530138 51.7E3.7 | 100123 143126 63108  4.7%27  8.8%2.0
3D-CycleGAN [5] | 3D | 39.944.6 57.843.8 67.144.0 423438 51.8+4.0 | 94422 108423 63428 45406  7.7+19
3D-CyCADA [32] | 3D | 49.143.5 662+3.6 76.843.3 559439 62.043.6 | 5619 44415 39+14  37+£13 44415
3D-DISE [32] 3D | 662426 63.043.0 73.14£2.8 58.643.1 652428 | 54417  50+£13 41405 47422 48+13
STFA [19] 2D | 570234 573%3.1 71.0%£25 567230 605129 | 85%2.0 89E19 46128 5.1106  68E18
UESM [43] 2D | 69.5425 67.042.1 754422 602427 68.0423 | 49416 45404 32423 46404 43412
Ours 3D | 72.8%1.7 79.3%1.5 823L1.8 647419 748117 | 22105 2.8L1.4 28412 24105  2.6:0.9

training and only 4 data for testing. Compared to these two
methods built on the 2D neural network, our framework based
on the 3D neural network obtains better performance in both
two adaptation directions. An interesting observation is that,
UESM built on the 2D neural network, outperforms all the
alternative methods with the 3D neural network, which is a bit
counterintuitive and can be explained from two aspects. First,
other than the 3D lower bound network WoDA, we build the
2D lower bound network WoDA-2D, which achieves 46.8%
and 28.7% mean Dice accuracy for MRI to CT and CT to
MRI directions, respectively. Compared to WoDA (64.9% and
38.1%), the performance is much lower and consistent with the
consensus that 3D networks outperforms the 2D counterpart.
Second, the favorable result of UESM mainly comes from the
special designed uncertainty-aware self-training strategy and
feature recalibration module that boost the performance and
play the key roles.

The representative visual segmentation examples are pre-
sented in Figs. 4 and 5, where our approach can accurately
segment the four cardiac substructures compared to the ground
truth (the second column), while other methods either fail to
produce the segmentation or generate inaccurate boundaries.
Meanwhile, the reconstructed high-quality 3D model of four
cardiac structures (Fig. 5) shows the consistent segmenta-
tion accuracy as reflected in the statistics. More importantly,
as shown in Fig. 5, the learned 3D landmarks lying in the
cardiac area (overlaid with the 3D model) extract consistent
local features within each adaptation direction, demonstrating
the network has learned semantically meaningful keypoints.

1) Topological Consistency of Landmarks: The visual results
in Fig. 5 reflect the topological consistency of the landmarks
to some extent, we further quantify it using the normalized
distances between points as the metric. Specifically, we have

10 cardiac testing data with ground truth segmentation masks
and we first align them together. Suppose we take the 1-st
sample as a reference, and apply affine and deformable trans-
formations to any of the remaining 9 samples to align them
to the reference. The transformations are calculated from the
ground truth masks and then applied to the corresponding
landmarks. After the alignment, we calculate the average
normalised distance between points as the metric. Since we
have 10 samples, each one will serve as the reference one
time, and we average the 10 values as the final topological
consistency metric. In our test dataset, the topological con-
sistency distance is 4.6 voxel-size (about 2.5mm), which is
much smaller compared to the whole cardiac region size (about
200mm).

2) Comparison With Traditional Method: [51] proposes the
state-of-the-art traditional method for whole heart segmenta-
tion using non-linear registration and non-local fusion. How-
ever, this method is designed for single-modality adaptation.
To achieve the fair comparison, we re-implement it to perform
multi-modality adaptation in the following.

As shown in Fig. 6, given an MRI image (Fig. 6(a)), we first
applied the affine and deformable transformations to align it to
the target CT image (Fig. 6(b)), so that we get a deformed MRI
image (Fig. 6(c)). Then, the same transformations are applied
to the ground truth segmentation mask of the MRI image to
derive the resulting segmentation mask of the target CT image
(Fig. 6(d)). As marked by the red arrow, we can see clearly
that the resulting segmentation does not respect the shape
boundary very well, while our method achieves the accurate
result (Fig. 6(e)). We further tested the segmentation accuracy
of the MRI to CT adaptation results of [51], and it achieved
67.07% mean Dice accuracy, while our mean Dice accuracy
is 85.8% that outperforms [51] by a large margin. Notably,
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Y —

Cardiac MRI -> Cardiac CT

Cardiac CT -> Cardiac MRI

Input GT FS WoDA 3D-CyCADA 3D-DISE UESM Ours

Fig. 4. Qualitative results of different methods for unsupervised MRI to CT domain adaptation (top three rows) and CT to MRI domain adaptation
(bottom three rows). Typical examples are showed row-by-row. The yellow, green, red and blue colors represent the cardiac structures AA, LA-BC,
LV-BC and MYO, respectively.

MRI =2 CT adaptation CT 2 MRI adaptation
7 : QV "D °UQ2 ° { op D %%
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MRI (Source) CT (Target) CT (Target) CT (Source) MRI (Target) MRI (Target)
Fig. 5. 3D segmentation results and corresponding extracted landmarks, including MRI to CT adaptation (left) and CT to MRI adaptation (right).
The first row overlays the segmented cardiac sub-structures with spatial landmarks, where the color-coding of landmarks expresses the consistency
across modalities. The second row visualizes the 2D coronal view image slice on the location of the selected landmark point (green box). Each

column corresponds to one example.

all learning-based methods reported in our paper obtain better our performance improvements over other methods. We uti-
performance than [51]. lized Dice and ASD as the evaluation metrics and set the

3) Paired t-test With Other Methods: we have computed the significance level as 0.05. As shown in Table II, all paired
p-value using paired t-tests to illustrate the significance of t-tests in both adaptation directions present p-value smaller
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(a) MRI

(b) CT

(c) Transformed MRI

(d) Transformed label (e) Ours

Fig. 6. The domain adaptation results from [4]. (a) The source MRI image, (b) the target CT image, (c) the deformed MRI image after registration to
(b), (d) the resulting segmentation result of (b) by adapting the ground truth segmentation mask from (a), (e) the segmentation result of our method.

TABLE Il
PAIRED T-TEST FOR OUR METHOD WITH OTHER METHODS

Metric | 3D-ADDA  3D-CycleGAN  3D-CyCADA  3D-DISE  SIFA UESM

Dice 2e-10 2e-8 Te-10 3e-6 9e-9 le-7
MRI to CT ASD 8e-10 Se-6 6e-6 Te-6 Se-7 4e-6

Dice 3e-10 4e-10 4e-8 8e-6 3e-8 Te-7
CT to MRI ASD 4e-9 Te-8 Se-5 2e-4 2e-6 4e-6

than 0.05, indicating that our performance improvements over
other methods are statistically significant.

D. Ablation Study of Key Components

Technically, we have three key components used in our
framework, including the unsupervised landmark detection,
Canny edge feature extraction, and discriminators for adver-
sarial training. We have designed a full ablation study with
all the combinations of the ingredients. Since the adversarial
training is coupled with Canny edge or landmarks, we thus
have the following configurations:

o Canny: it only has a segmentor trained on the Canny
edges extracted from source domain data and directly
forwards the Canny edges from the target domain data
to get the resulting segmentation.

o Landmark: it has the unsupervised landmark detection
module, and in the segmentation module, the segmentor
only accepts the Guassian map from landmarks as input
to derive the resulting segmentation.

o Canny-Adv: augment Canny with the discriminator D€,
so that the segmentor takes as input the Canny edges
extracted from both the source and target domains.

o Landmark-Adv: augment Lanmark with the discriminator
D" to further align the features.

o Landmark-Canny: augment Landmark with the Canny
edge input, so that the segmentor takes both the Gaussian
map from the landmarks and the Canny edge features.

o FullNet (Landmark-Canny-Adv): combine all the three
ingredients together.

We also include the lower bound WoDA (without any of
the three ingredients) to better measure the improvements
of different ingredients. The statistics for the bidirectional
adaptations are presented in Table III, where the three compo-
nents work together (FullNet) to achieve the best performance,
except that the ASD error of the AA structure in the MRI to
CT direction outperforms a little bit due to the variability and
the inherent stochasticity of network training. We discuss each
component in the following:

1) Effectiveness of Landmarks: The detected landmark that
encodes the underlying domain-invariant anatomical structure
is the key factor of our algorithm, and is also the reason why
our method can outperform the state-of-the-art approaches.
This can be validated from two aspects. Firstly, all configura-
tions with landmarks, e.g., Landmark, Landmark-Adyv, achieve
higher segmentation results and outperform the state-of-the-art
methods in both adaptation directions. Secondly, the perfor-
mance improvement also reveals the conclusion. Take the
MRI to CT adaptation as an example, compared to WoDA,
Landmark and Canny boost the Dice accuracy by 16.4% and
9.5%, respectively. And adding Canny to Landmark only gets a
1.6% Dice increase, while adding Landmark to Canny obtains
a remarkably 8.5% increase. Similarly, by augmenting Canny
to Landmark-Ady, the Dice accuracy grows only 2.3%, while
by augmenting Landmark to Canny-Adyv, the Dice accuracy
rises by a considerable 6.2%.

The similar statistical evidence can be derived from the CT
to MRI adaptation direction, and all statistical analyses explain
the conclusion.

2) Effectiveness of Canny Edges: Canny edge map is effec-
tive and helps significantly, especially for the MRI to CT
adaptation. For example, Canny boosts the performance of
WoDA by about 9.5%, and outperforms most of the state-
of-the-art methods. However, it cannot lead to the favorable
performance for the CT to MRI adaptation, where Canny only
gains 2.6% improvement over WoDA and it is lower than all
the state-of-the-art methods. The reason is that CT images
display more clear cardiac structure than MRI images, thus
the Canny edge map extracted from CT images is less noisy
and more helpful. A well-trained segmentor on the clear Canny
edges performs worse when facing noisy input (CT to MRI),
while it obtains good results in the inverse direction since CT
Canny edges have inherent clear structure (MRI to CT).

3) Effectiveness of Adversarial Training: The adversarial
training serves to further align the source and target domain
data in Canny edge feature extraction and landmark detection.
As listed in Table III, by adding adversarial training, Canny-
Adyv, Landmark-Adyv, FullNet improve the mean Dice accuracy
by 5.2%, 2.2%, and 2.7% for the MRI to CT adaptation,
while they gains 2.6%, 2.8%, and 1.7% improvement for the
CT to MRI adaptation. In addition, a notable and interesting
observation is that without D" and D¢, all the configurations
still achieve promising segmentation results, e.g., for the
MRI to CT adaptation, Landmark-Canny achieves 82.9% on
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TABLE IlI
ABLATION STUDIES OF THE NETWORK KEY COMPONENTS FOR BOTH ADAPTATION DIRECTIONS

MRI to CT
Methods Dice [%] T ASD [Voxel] |
AA LA-BC LV-BC MYO Mean AA LA-BC LV-BC MYO Mean
WoDA 63.6+42 61.8+43 709434 633+47 649+42 | 163140 32.2+6.7 17.04£3.8 19.1+4.0 21.24+49
Canny 80.6£3.5 78.2+3.8 733+25 657149 744437 8.5+2.8 7.7£2.5 5.1£2.2 6.7£2.4 7.0£2.5
Landmark 844+£19 82.0+£1.2 83.6+£20 75.1+33 81.3+2.0 6.8£2.3 52+1.8 4.84+1.6 4.740.8 54+1.6
Canny-Adv 85.14+2.1  81.2+1.8 781434 752420 79.6£2.3 49+1.1 5.1+1.6 7.1+£2.0 5.54+0.7 5.6+14
Landmark-Adv 86.4+2.0 83.6+£2.1 87.5+1.6 76.8+1.8 83.5+1.8 7.8£1.9 4.8+1.1 3.1£0.7 3.5+0.8 4.8+1.1
Landmark-Canny | 86.4+1.5 82.5+14 852+12 772425 829+1.7 3.5+£0.8 5.2+1.9 44413 39+14 42413
FullNet 87.9+1.7 88.1+1.5 884+1.7 78.7£2.0 85.8+1.6 3.8+0.6 3.3+1.2 3.1+1.2 34412 3.44+1.0
CT to MRI
Methods Dice [%] 1 ASD [Voxel] |
AA LA-BC LV-BC MYO Mean AA LA-BC LV-BC MYO Mean
WoDA 22.54£5.6 39.5+4.6 552425 353451 381445 | 25.1+4.8 179439  159+£50 10.6+4.2 17.4+4.4
Canny 30.8£7.1 42.7+£52 524444 369+44 40.7+5.0 | 169440 12.8432 17.0£2.2 103+£39 143433
Landmark 66.94+3.0 72.8£2.8 79.0£25 59.7+£2.6 69.6£2.7 5.9+1.7 6.8+1.7 6.1+2.5 5.3+0.8 6.0£1.6
Canny-Adv 33.84£6.3 455+4.8 56.2+5.1 375445 433449 | 124442 9.7£2.9 14.3£2.9 8.4+1.7 11.2£2.9
Landmark-Adv 701422 76.941.8 80.8+1.7 61.642.7 724421 | 45415 53414  51£18 47408 49413
Landmark-Canny | 70.2£1.6  789+1.5 804+£1.7 6294+2.1 73.1£1.6 3.1+14 3.6+1.3 2.8+0.7 3.2+1.7 32+1.3
FullNet 72.8+1.7 79.3+1.5 82.3+1.8 64.7t19 74.8+1.7 2.24+0.5 2.8+14 2.8+1.2 2.440.5 2.6+0.9
average DSC score and 4.2 on the average ASD error, which TABLE IV

is much different with the severe failure without adversarial
training observed in previous works [7], [19]. This also verifies
our strategy design that domain-invariant structural landmarks
as well as Canny edges play important roles in unsupervised
domain adaptation.

4) Paired t-test With Different Ablation Configurations: Sim-
ilarly, we have conducted paired t-tests for our FullNet
with other ablation configurations. It can be observed from
Table 1V, all the p-values are smaller than 0.05, except
the mean ASD of “Landmark-Canny” from the CT to MRI
adaptation direction (i.e., 0.058). This is because by exploiting
landmarks and Canny edges, the network version ‘Landmark-
Canny’ has already achieved good performance, thus by
further adding adversarial training (i.e., FullNet) would gain
a little improvement, which is not that significant. This also
reveals that landmarks and Canny edges play more important
roles in our pipeline.

E. Sensitivity of the Canny Edge Noise

Generally, Canny edges contain a certain level of noises
and imperfections (e.g., open-corners or missed junctions) by
applying different parameter threshold values (i.e., the devia-
tion of the Gaussian filter in the Canny operator). However, our
method is robust to the noises and imperfections, because the
low-level appearance information encoded in the edge map,
instead of the exact corners and junctions, is more practical
in our case, since we find the segmentation boundary by
regression instead of sparse line selection. To validate the
sensitivity of our method to noises or imperfections, we have
conducted a ablation study by varying the deviation values.

Qualitatively, as shown in Fig. 7, both Canny edges with
increasing noises and imperfections lead to similar accurate
segmentation results compared to the ground truth. And quan-
titatively (Table V), all the configurations achieved comparable
segmentation quality in terms of the mean Dice accuracy

PAIRED T-TEST FOR OUR FULLNET WITH OTHER
ABLATION CONFIGURATIONS

. ; Landmark  Landmark
Metric | WoDA  Canny Landmark  Canny-Adv _Adv _Canny
Dice 2e-10 le-8 Se-6 3e-7 6e-5 3e-5
MRI to CT ASD 6e-9 6e-8 4e-6 8e-7 3e-4 Se-4
Dice le-11 4e-11 3e-6 le-10 3e-5 Se-3
CTWOMRI | ASD | Se10  8e10 T 8e-9 6e-3 0.058

TABLE V
STATISTIC RESULTS OF THE SEGMENTATION QUALITY USING
DIFFERENCE CANNY EDGES

Deviation 1 2 3 4 5
Dice [%] [ MRIto CT | 85.0£1.6 85.6+1.8 858%1.6 858%f16 857£19
i | CTto MRI | 73.1£2.6 747£14 748%1.7 T744%£2.7 74.6£0.9

Prediction (a=4)

Ground truth Prediction (a=2)

Fig. 7. Segmentation results by inputting different edge maps derived
with different deviations of the gaussian filter.

in both adaptation directions. Both the visual and statistical
results verify that our method is robust to Canny edge noises
to generate high-quality segmentation results. As for the time
efficiency, it takes about 2.1s to calculate a 3D Canny edge
map, while the overall running time for a data sample in
the testing stage is about 3.2s. Although we cannot achieve
a real-time feedback, it is relatively fast enough.

F. Sensitivity of the Thin-Plate-Spline Deformation

We use the 3D thin-plate-spline (TPS) geometric defor-
mation in our method to build the image pairs. To validate
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TABLE VI
SEGMENTATION PERFORMANCE USING DIFFERENCE PARAMETERS OF
TPS DEFORMATION IN THE IMAGE PAIR BUILDING STAGE

R 0.3 0.5 0.7 0.9

Dice [%] | 84.94+1.8 85.842.0 85.8+t1.6 824+1.6

Nbpt 1x1x1 2x2x2 3x3x3 4x4x4

Dice [%] | 82.842.1 84.9+1.5 858+£1.6 85.6%1.7
TABLE VII

SEGMENTATION PERFORMANCE (MRI TO CT) OF OUR METHOD WITH
DIFFERENT NUMBERS OF LANDMARKS

. arks Dice [%]

# Landmarks AA LABC  LV-BC MYO Mean
16 863125 842420 824420 725E12 SIA4L17
32 879417 88.14+1.5 884+17 787420 858LL6
48 858+1.6 88.9+1.4 850425 782+1.1 84.5+16
64 88.042.6 885427 855422 777426  85.042.1
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Fig. 8. Segmentation performance (MRI to CT) of our method with
different numbers of landmarks.

the sensitivity to the deformation field, we do a further
ablation experiment by changing two core parameters of TPS
deformation: the deformation span range (Ry), and the number
of points in the control grid (Nb,;). Note that when we change
one parameter, we use a default value for the other, i.e., 0.7 for
the deformation span range, and 3 x 3 x 3 = 27 for the number
of points in the control grid, and report the mean Dice accuracy
of the segmentation in Table VI.

As observed, except for two extreme cases (i.e., Ry = 0.9
and Nby; = 1 x 1 x 1), all other configurations achieve
comparable high-quality segmentation results, which indicates
that our method is insensitive to the deformation fields within
the normal parameter range.

G. Sensitivity to the Number of 3D Landmarks

The 3D landmarks are learned unsupervisedly without man-
ual annotation. To validate the performance of our method with
different numbers of landmarks, we follow the same two-fold
cross validation training strategies with 16, 32, 48 and 64
landmarks respectively. As shown in Table VII, the segmenta-
tion results using 16 landmarks are relatively lower compared
to others, which indicates that it is insufficient to represent the
cardiac structure properly with only 16 landmarks. Meanwhile,
the comparable results achieved with 32, 48, and 64 landmarks
reveal that our method is less sensitive to the number of
landmarks within a certain range. In addition, we also provide
the 3D segmentation results and corresponding landmarks in
Fig. 8. It can be seen that, although there are different numbers
of landmarks, they tend to represent the cardiac structure with
a similar spatial distribution.

87.5 4
85.0
= 8251
o
S s0.0
w
]
a 77.5 4
75.0
72.5 4
0 2 a 6 8 10
The Number of Target Data
Fig. 9. Segmentation performance (MRI to CT) of our method with

different numbers of target domain training scans.

H. Sensitivity to Target Domain Training Size

Unsupervised domain adaptation with limited data is also an
important direction in medical image analysis [52]. To study
the data efficiency of our method, we follow the same exper-
iment settings except the number of target domain training
scans. Perhaps surprisingly, as shown in Fig. 9, even without
target domain training data, our method does not suffer from
huge performance degradation and still outperforms the previ-
ous methods relying on image- and feature-level alignments.
This is benefited from the fact that the learned cardiac structure
and Canny edges are less effected by the domain-specific
information. Meanwhile, more target domain scans seen by
our framework will consistently improve the segmentation
performance.

V. DISCUSSION

In contrast to most existing methods [7], [19] that focus on
image- and feature-level alignments, to address the unsuper-
vised domain adaptation problem, we explore a novel direction
that utilizes 3D landmarks to represent the cardiac structure
and combine it with low-level Canny edges to provide an
accurate cardiac segmentation. To fully understand the mech-
anism of our method, we present the following discussions
from two aspects, the advantages of explicit structure learning
over implicit feature adaptation in segmentation tasks and
exploiting the extra target domain data.

1) Feature Adaptation vs. Anatomic Structure Detection: We
have claimed in the introduction that styles or latent features
of images may not guarantee good domain adaptation results,
which is more clear after results. This conclusion mainly
comes from the comparison, the detailed ablation study and
the discussion sections, where we clearly find that: 1) the
state-of-the-art methods replying on style or latent feature
adaptation achieve much lower segmentation quality; 2) our
favorable segmentation quality is primarily due to the use
of the automatically detected domain-invariant anatomical
structure.

Thus, we conclude that the implicit common features
existing in the image style or deep features across images
of different modalities are less effective than the intrin-
sic common anatomical structure, since medical images of
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TABLE VIII
THE STATISTIC OF THE ADDITIONAL EXPERIMENTS USING THE EXTRA
40 NON-ANNOTATED TARGET DOMAIN DATA

Dice [%]
AA LA-BC LV-BC MYO Mean
FullNet 87.9+1.7 88.1+1.5 88.4+1.7 78.74+2.0 85.8+1.6
FullNet-E | 87.4+25 87.6+2.3 88.0£2.1 78.842.6 85.5+2.3
FullNet-T | 88.5£0.8 88.1+1.0 88.6£1.2 79.0+1.0 86.1£0.9

different modalities are captured to reveal the same anatomical
structures. Thus explicitly constraining the neural models with
respect to such common anatomical structures across images
of different modalities benefit a lot of the domain adaptation.

2) Exploit Extra Target Domain Data in MM-WHS: there
are extra 40 non-annotated target domain data available in
MM-WHS, we have further explored to use these data in our
algorithm for training and testing.

Training: since there is no requirement of ground truth
labels from the target domain data in both landmark detec-
tion and segmentation modules, we thus trained our FullNet
from scratch using 20 source domain data, 10 target domain
data (the common splitting scheme), as well as the new 40
target domain data. The new network version is denoted as
FullNet-T, and we reported the statistics on the same testing
dataset (10 target domain data) in Table VIII. As can be seen,
there is only a slight performance improvement (0.3%) with
more target domain data. Combining this observation with
the result in Fig. 9, it suggests that 10 target domain data
is sufficient to robustly learn the domain-invariant landmarks,
which plays the key role in the segmentation task.

Testing: we directly tested our trained FullNet on the 40
target domain data (the new testing version is denoted as
FullNet-E). To be more clear, the 40 target domain data is
actually labeled, but the labels are inaccessible and we only
can run the special designed script to get the evaluation met-
rics. As can be seen from Table VIII, the mean Dice accuracy
on the new testing dataset is 85.5%, which is comparable
with FullNet (85.8%, tested on the 10 target domain dataset),
indicating that our reported results are not cherry-picked and
our method is robust for the domain adaptation task.

3) Limitation and Future Work: Although our approach has
achieved good performance in bidirectional cardiac images
(CT and MRI) adaptation, the limitation of our method still
exists. Specifically, we assume both source and target data
have relative high resolutions to capture the 3D anatomical
structure. However, in clinical applications, the slice thickness
of CT and MRI images may differ greatly, which brings
new challenges to extract the meaningful and consistent 3D
structural landmarks. Therefore, in the future, we would
explore efficient approaches to combine 2D and 3D anatomical
information for unsupervised domain adaptation. Meanwhile,
since the anatomical structure is learned unsupervised without
manual annotation, another interesting and appealing direction
is to apply our unsupervised domain adaptation module in
semi-supervised tasks so that the learned structural landmarks
embedded in both labeled and unlabeled data would boost the
performance in medical image processing tasks.

VI. CONCLUSION

We propose a novel structure-driven domain adaptation
approach for unsupervised cross-modality cardiac segmenta-
tion. Our framework explicitly extracts the domain-invariant
anatomical structure represented by 3D landmarks and com-
bine it with the edge information to guide the accurate
cardiac segmentation. We have evaluated our algorithm both
qualitatively and quantitatively, and compared it against state-
of-the-art methods, where our approach produces superior
results and outperforms others by a significant margin. In
addition, our proposed method is a general strategy that could
be extended to other unsupervised domain adaptation tasks in
medical image analysis.
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