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Fig. 1. Five freeform shapes created by our sketch-based modeling approach, with the corresponding planar sketches. The curvy container is a single surface
patch, the crane, pillow and teapot are each made from two symmetric surface patches, and the skirt is made from two surface patches sketched individually.
The annotations for the sketched strokes are defined in Sec. 3.2.

Sketch-based modeling provides a powerful paradigm for geometric model-
ing. Recent research had shown, sketch based modeling methods are most
e�ective when targeting a speci�c family of surfaces. A large and growing
arsenal of sketching tools is available for di�erent types of geometries and
di�erent target user populations. Our work augments this arsenal with a new
and powerful tool for modeling complex freeform shapes by sketching sparse
2D strokes; our method complements existing approaches in enabling the
generation of surfaces with complex curvature patterns that are challenging
to produce with existing methods.

To model a desired surface patch with our technique, the user sketches the
patch boundary as well as a small number of strokes representing the major
bending directions of the shape. Our method uses this input to generate a
curvature �eld that conforms to the user strokes and then uses this �eld to
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derive a freeform surface with the desired curvature pattern. To infer the
surface from the strokes we �rst disambiguate the convex versus concave
bending directions indicated by the strokes and estimate the surface bending
magnitude along the strokes. We subsequently construct a curvature �eld
based on these estimates, using a non-orthogonal 4-direction �eld coupled
with a scalar magnitude �eld, and �nally construct a surface whose curvature
pattern re�ects this �eld through an iterative sequence of simple linear
optimizations.

Our framework is well suited for single-view modeling, but also supports
multi-view interaction, necessary to model complex shapes portions of
which can be occluded in many views. It e�ectively combines multi-view
inputs to obtain a coherent 3D shape. It runs at interactive speed allowing for
immediate user feedback. We demonstrate the e�ectiveness of the proposed
method through a large collection of complex examples created by both
artists and amateurs. Our framework provides a useful complement to the
existing sketch-based modeling methods.
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Additional Key Words and Phrases: sketch, freeform shape, curvature �eld,
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1 INTRODUCTION
Our natural environments contain many irregular, complex free
form shapes: the clothing and shoes we wear, our bags, hats, soft
furniture, dishes, animals and plants. While traditionally such ge-
ometries were modeled using CAD softwares, in recent years there
is an increasing e�ort to use more user-friendly sketch-based model-
ing tools for this task. Unfortunately while existing sketching tools
are suitable for modeling many classes of shapes (Section 2), they
are not well suited for designing free form surface with complex
curvature patterns that show up on natural shapes such as animal
bodies, clothing, or even tableware (Figure 1). We present a method
that allows users to model such varying surface curvature patterns
using a sketching interface (Figure 1).

The local curvature variation of a freeform shape can be vividly
described by a small set of curves showing the major bending direc-
tions on the surface. Our work takes such bending stroke patterns
and uses them to derive detailed surface geometry. Our method takes
as input a set of sparse and unorganized bending strokes, as well as
other supplemental curves, and automatically infers the freeform
shapes that follow these strokes. Bending strokes provide a natural
interface, frequently used by artists for depicting details on curved
surfaces (c.f. the works of Thomas Nast). In mathematical terms,
these strokes approximate the 2D images of smooth principal cur-
vature lines of the depicted 3D shapes. In computer graphics, such
curves have been used as the hatching lines for non-photo-realistic
rendering (NPR) of 3D shapes [Hertzmann and Zorin 2000], and as
constraints for generating normal vector �elds for 2.5D rendering
of planar drawings [Iarussi et al. 2015; Shao et al. 2012]. Inspired
by these methods we develop an algorithm that combines sketched
bending curves with other characteristic surface curves such as
ridge and valley lines, contours, and sharp feature curves, and uses
these as input for modeling complex free-form surfaces.

We represent freeform surface patches as height-�eld surfaces;
modeling such a patch in our system is equivalent to shape recon-
struction from projected principal curvature lines approximated by
the input bending strokes. The challenge of such reconstruction is
two-fold, �rst we need to interpret the input resolving ambiguities
and second we need a systemic approach for converting curvature
information into surface geometry, an inherently non-linear prob-
lem. First, we a priori do not know if the sketched curves convey
convex or concave bending directions of the 3D surface; this is an
example of the well-known bas-relief ambiguity with 2D depictions
of 3D shapes [Belhumeur et al. 1999]. Second, the amount of bending
along the strokes is similarly unknown: the 2D shape of a stroke is
the combined result of both its spatial shape on the surface and the
relative orientation of this spatial curve with respect to the view
or projection direction. Since the shape of the surface is unknown
there is no unique way to infer the curve’s spatial shape (or how
much the surface bends along the curve) solely from its 2D projec-
tion. Third, while the strokes provide some information on the local
geometry in their immediate surroundings, they are surrounded by
large blank regions that have no such information; our challenge is
to propagate the stroke data across these regions in a smooth and
meaningful way. The question amounts to modeling a curvature

tensor �eld of the spatial surface as it is projected onto the 2D plane,
given the constraints of a sparse set of projected curvature lines.

To resolve the above mentioned challenges, we make the follow-
ing technical contributions in this paper. To disambiguate the bend-
ing strokes representing convex and concave surface curvatures,
we �nd convexity correlations among locally proximate strokes,
and utilize the correlations to �nd the most consistent convexity
labeling of the strokes. To estimate the real curvature of the un-
known surface along the bending strokes, we jointly optimize both
the curvature values along the strokes and the unknown surface ge-
ometry, converging to a common spatial shape. Lastly, to propagate
geometric information from the sparse strokes across the rest of
the surface we construct a smooth curvature �eld model, which is
represented by an non-orthogonal 4-directional �eld coupled with
a scalar magnitude �eld, from which the surface with desired curva-
ture pattern is constructed through an iterative sequence of simple
linear optimizations.

We extend our approach to the multi-view setting, to allow for
modeling of more complex shapes: for each view, the method takes
the sparse 2D user strokes as input, and builds the height �eld
surface for the current view; as the user rotates to new views and
sketches additional curves, the method builds partial surfaces for
every view and combines them smoothly through shape preserving
registration.

The e�ectiveness of the proposed method is demonstrated through
a range of examples, an extensive user evaluation done with our
system by novice users without artistic training who were able
to successfully create a range of non-trivial geometries, shown in
Section 5, and a detailed comparison to previous methods. We also
validate the steps of our method through comparison with ground
truth data.

2 RELATED WORK
Sketch-based modeling is an active research area spanning a large
range of methods addressing di�erent categories of shapes. For
detailed surveys of both earlier works and more recent progresses,
we refer the reader to [Company et al. 2005; Ding and Liu 2016; Jorge
and Samavati 2011; Olsen et al. 2009]. Below we brie�y discuss the
major categories of sketch-based modeling methods based on the
type of geometries they target and the type of curves they utilize.

Contour based models. Starting from the seminal Teddy system
[Igarashi et al. 1999], a range of methods use contour curves to infer
3D geometric shape. They form smooth low-frequency 3D surfaces
constrained by the contours, where the surfaces are constructed
as membrane functionals [Igarashi et al. 1999; Joshi and Carr 2008;
Nealen et al. 2007; Zhang et al. 2001], or de�ned by distance trans-
forms and implicit functions [Bernhardt et al. 2008; Olsen et al. 2011;
Schmidt et al. 2005; Tai et al. 2004]. The methods support adding
more details to the models through marking positional, normal, or
curvature value constraints, or by re�ning and blending the implicit
functions, to produce sharp features and ridges/valleys, frequently
leveraging multi-view and multi-layer frameworks. Karpenko et
al. [2006] show how to infer the topology of a plausible solid shape
given its visible contours drawn by users, and build the smooth
shape through in�ation which they model as the relaxation of a
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mass-spring system. Yeh et al. [2016] model 3D objects with self-
occlusions out of photos, by classifying the occlusion types and
connecting separated patches, and lifting the shapes through mark-
ing the depth variance along patch boundaries and mean curvature
values in the patch interiors.

Multiple frameworks speci�cally address modeling of smooth
shapes whose parts exhibit high degrees of rotational symmetry.
Exploiting the symmetry and simplicity of these geometric primi-
tives, the user only needs to sketch a few pro�le curves to determine
their speci�c shapes. For example, Gingold et al. [2009] have users
annotate over the 2D sketch which parts are generalized ellipsoids,
which parts are generalized cylinders, and how these parts relate to
each other through symmetry, adjacency, etc. The various parts are
then constructed and �tted together to form the complete 3D shape.
Similarly in [Shtof et al. 2013], the user �rst draws a 2D outline of
the object, and then incrementally selects geometric primitives from
a set of candidates and places each object over the 2D sketch, while
the method automatically �ts the geometric primitives to the 2D
sketches and also to previously placed parts for consistency. Chen
et al. [2013] utilize generalized cylinders pervasively for the easy
modeling of 3D objects from photographs, where the photos are
�rst processed to extract object contours and then the user sketches
the base and pro�le curves to guide the construction of generalized
cylinders that also �t to the extracted contours. Andre et al. [2007]
use two sets of strokes that depict orthogonal curves of the 3D sur-
face, and recover the surface by sweeping one set of strokes along
the other. A later work, [Andre and Saito 2011], has users sketch
in a single view the two pro�le curves of a generalized ellipsoid
and the contour curve; the system then constructs a 3D shape by
sweeping one pro�le curve along the other while �tting to the con-
tour. Miao et al. [2015] show the use of symmetry in constructing
more generalized ellipsoids and in combining components into a
full cartoon character.

Our framework complements these approaches by extending the
sketching paradigm to smooth high-frequency surfaces by allowing
users to describe curvature variation across surfaces and enriching
the set of output models with additional smooth details. Indeed,
while previous contour-based methods aim at creating smooth and
plausible shapes with local sharp features, in our approach the di-
rect speci�cation of curvature variation patterns through sketching
bending lines enables the creation of additional controlled com-
plexity (see Figs. 1, 6), which can be outside of the scope of many
previous methods or very tedious for them otherwise (Sec. 5.3).

Curve networks. A range of methods focus on extracting 3D curve
geometry from artist strokes, assumed to represent meaningful sur-
face curves [Bae et al. 2008; Schmidt et al. 2009; Xu et al. 2014].
They then create 3D shapes by interpolating the resulting curve
networks using perception-driven surfacing methods [Bessmeltsev
et al. 2012; Pan et al. 2015; Zhuang et al. 2013] . ILoveSketch [Bae
et al. 2008] presents an interactive system that allows the sketching
of 3D curves through a 2D interface. Schmidt et al. [2009] support
sketching 3D curves through the incremental construction of scaf-
fold structures. True2Form [Xu et al. 2014] converts a 2D curve
network to 3D, by enforcing the various regularities inherent in
many man-made objects, including the orthogonality of crossing

curves, the planarity of curves, the parallelism/orthogonality of
object faces, etc. [Li et al. 2007] presents a closed form solution for
reconstruction of piecewise planar objects from the 2D line drawing
of edges of the objects; [Wang et al. 2009] extends the range by
reconstructing shapes with curved faces from 2D line drawings, as
it �rst recovers the 3D wireframe through regularities and then �lls
up the faces with Bezier patches or triangle meshes. These meth-
ods target man-made shapes which exhibit high-regularities and
relatively low curvature variation. Our framework addresses the
modeling of more natural and less regular shapes which exhibit
complex curvature patterns.

Domain speci�c methods. Many sketching methods are domain-
speci�c, e.g. targeting the creation of 3D characters [Bessmeltsev
et al. 2015; Cordier et al. 2011; Entem et al. 2014], garments [Robson
et al. 2011; Turquin et al. 2004], developable surfaces with folds [Jung
et al. 2015; Zhu et al. 2013], layered models [De Paoli and Singh 2015]
or hair [Fu et al. 2007]. These methods leverage domain speci�c
cues and are not applicable to the more general setting we aim to
address.

Data-driven and learning-based methods. Early data-driven meth-
ods for sketch-based modeling use the user sketch as a key for search
through a database of shapes, and retrieve shapes whose features re-
semble the sketch; The retrieved models are subsequently deformed
to better �t the contours speci�ed in the sketches. Examples include
scene modeling [Xu et al. 2013] and object modeling [Xie et al. 2013].
The obvious limitation of these methods is that the database has to
be large and diverse to allow true �exibility in modeling.

Recently researchers also employ advanced machine learning
techniques like Convolutional Neural Networks (CNN) to build a
direct mapping from user sketches to 3D shapes, and speci�cally
to parameters of procedural 3D shape models [Huang et al. 2016;
Nishida et al. 2016]. While capable of providing impressive conve-
nience to users through the powerful mapping modeled by CNNs,
these methods are usually restricted to modeling particular classes
of objects being observed through �xed viewpoints, as a neural
network built for one object class under one viewpoint does not
generalize to other situations.

Drawing on 3D canvas. A number of methods support the creation
of simple 3D objects �rst, and then allow the user to incrementally
edit the 3D object to add new components and details. For example,
Teddy [Igarashi et al. 1999] and FiberMesh [Nealen et al. 2007] al-
low both the creation and editing of simple smooth shapes through
sketching, while [Nealen et al. 2005] and [Gingold and Zorin 2008]
let the user edit existing shapes through sketching new contours,
suggestive contours and other shading-based feature lines. Our
framework increases the stroke vocabulary supported by these sys-
tems allowing users to specify curvature variation across the surface
directly, which can be tedious to produce with the positional and
shading-based strokes.

3D modeling softwares, e.g. Zbrush[ZBr 2016], support sculpting
and “drawing on 3D canvas” interaction, but require signi�cant
expertise to use these features e�ectively. Compared with these
3D drawing methods, the technique in this paper focuses on the
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(a) (b) (c) (d) (e)
Fig. 2. Surface sketching pipeline for one view. From le� to right: (a) the input strokes parsed with labeling of convexity (red/blue for convex/concave), (b) the
2D domain mesh, (c) the 2D 4-direction field modeling curvature directions, (d) the finally solved 2D curvature field with curvature directions and magnitudes
(red/blue for positive/negative curvatures), and (e) the solved surface.

quick modeling of freeform shapes through simple 2D sketching
consisting of very few strokes.

Normals from sketches. A range of methods address the recon-
struction of normal vectors from sketches, using the normals to
apply a range of rendering e�ects to the underlying sketches. In
[Sýkora et al. 2014], a bas-relief 3D proxy is created to enable the ren-
dering of 2D sketches with vivid 3D impressions; this proxy is not
designed to provide a correct 3D reconstruction. CrossShade [Shao
et al. 2012] leverage orthogonality between sketched curvature lines
to infer normal vectors; many of their ideas were instrumental in
lifting curve networks to 3D in [Xu et al. 2014], however the normals
they produce are not accurate enough to facilitate actual reconstruc-
tion [Xu et al. 2014]. Similarly, Bui et al. [2015] compute smoothly
varying normal vectors from silhouettes and hatch lines which are
also regarded as curvature lines. Iarussi et al. [2015] introduce the
notion of BendField energy to measure the smoothness of the pro-
jected curvature directions on 2D plane, and solve normal vectors
as the cross product of lifted curvature directions; we are inspired
by this approach and extend the BendField energy to model a com-
plete curvature �eld projected on 2D, as presented in Sec. 3.4. Xu et
al. [2015] infer normal vectors from a di�erent type of curves, the
so called isophotes, which represent curves of equal shading. The
isophote curves are less intuitive than bending strokes for many peo-
ple and they involve the speci�cation of the lighting direction; on
the other hand, isophote curves as constraints on surface curvature
can be naturally incorporated into our framework (Sec. 3.4).

3 SINGLE VIEW MODELING
In this section, we focus on how to model a single freeform sur-
face patch through sketching 2D bending strokes and other curves.
In Section 4, we show the extension to multiple view processes
for modeling more complex shapes with occlusion that cannot be
described in a single view.

3.1 Overview
Our framework takes as input a speci�c set of sketching strokes, and
solves the surface patch that matches the input. The bending strokes
and other strokes used in our framework are de�ned in Section 3.2.
The computational process from sketch to surface consists of several
steps (see Fig. 2) to be presented in the following sections:

(a) the processing of input strokes, in particular to disam-
biguate the bending strokes from representing convex/concave
surface curvature (Sec. 3.2),

(b) the triangulation M of the sketched domain Ω for subse-
quent surface computation (Sec. 3.3),

(c) the principles of constructing a curvature �eld on the trian-
gulated domain from bending strokes, and of reconstructing
surface from the curvature �eld (Sec. 3.4), and

(d) the algorithm of joint computation of the curvature �eld as
well as the surface through an iterative process where both
the curvature magnitudes and the surface shape are solved
(Sec. 3.5).

Finally, in Sec. 3.6 we discuss the boundary conditions and how the
other strokes a�ect surface shape computationally.

3.2 2D Strokes
3.2.1 Stroke types and representation. In our framework, we use

the following types of 2D strokes to model the freeform surfaces
(Fig. 2(a)):

• boundary - where the surface discontinues,
• bending stroke - projection of a principal curvature line of

the spatial surface, can represent convex/concave surface
curvature,

• sharp feature - a curve across which the normal vectors
change discontinuously with convex/concave angles,

• ridge/valley - a curve across which the surface always bends
back/forward,

• �at stroke - a curve along which the surface has no bending,
• contour - boundary with known surface normal directions,

or object silhouette.

The �rst three types of strokes are basic and orthogonal in func-
tion, while the ridge/valley strokes are extensions meant to ease the
modeling of particular shapes and are actually implemented by the
basic bending strokes. Flat strokes, a special case of bending strokes
with vanishing curvature, are used for modeling almost developable
surface regions that have no bending in the stroke direction.

All strokes are represented as 2D polylines. In our interactive
sketching system, they are �rst acquired by tracing the pen motion
as the user draws the 2D sketching, and then resampled uniformly
and smoothed to remove noise.
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Fig. 3. Observations about the relations of convex/concave properties be-
tween neighboring curve segments. The lower two strokes s0, s2 are sequen-
tial to each other, while the le� two strokes s0, s1 are parallel. The geometric
quantities and thresholds used for checking the stroke relations are illus-
trated. In our experiments, we use α0 = α2 = 15◦, α1 = 20◦, d = D/30,
and two simple strokes are considered neighbors if their closest distance is
less than D/10, with D the diagonal length of the bounding box of sketch
domain.

3.2.2 Stroke parsing. Given a set of 2D bending strokes scattered
inside the sketching domain, we need to know whether the strokes
represent convex surface bending or not, which is essentially about
resolving the bas-relief ambiguity inherent to the planar depictions
of a 3D shape. Rather than having the user manually label whether
each stroke represents convex curvature or otherwise, we try to
automatically decide it. For the rest types of strokes, the convexity
of sharp features and the choice of ridge versus valley curves are
speci�ed by the user, as these curves represent marked features of
which the user wants direct control.

While resolving convex/concave ambiguity is generally known
to be impossible to solve properly, we �nd clues about stroke label-
ing patterns at local regions: locally proximate strokes often have
correlated convexity properties. Based on the correlations, we solve
the question by regarding the strokes as a whole and searching for
the most consistent stroke labeling.

Before introducing the correlations, �rst we de�ne the notion of
simple strokes, which the correlations are built upon, as strokes that
only bend in one direction in the 2D plane. Formally, given a stroke
s(t), t ∈ [0, 1], the signed curvature k(t) = det(s′(t ),s′′(t ))

‖s′(t ) ‖3 ; if k ≥ 0
(or k ≤ 0), the stroke is a simple one. Notice that when the stroke
is parametrized reversely, k changes sign as well. Thus when we
choose the traversal tangent direction −→T of a simple stroke, we can
say the stroke is planar convex (k ≥ 0) or concave (k ≤ 0), which
we denote as siдn(s,−→T ) ∈ {+,−}.

We make the following observations about the convex/concave
properties of locally correlated bending strokes (Fig. 3):

(a) a simple stroke is slightly more likely to be convex (the
convex prior);

(b) two sequential simple strokes with the same/opposite pla-
nar convexity are likely to have the same/opposite convex-
ity properties;

(c) two parallel simple strokes with the same planar convexity
are likely to have the same convexity property.

Note that in (b) and (c) when we compare two strokes, we choose
their traversal tangent directions to have an angle less than 90 de-
grees. The convex prior (a) is a reasonable default assumption, since
we are likely to see the convex parts of an object while the concave
parts can be hidden; such a prior is also used in 3D reconstruction
methods in computer vision [Barron and Malik 2015].

To analyze the convexity of strokes, the input strokes are �rst
segmented into simple strokes, and then a graph G = (V, E) is built,
with each simple stroke as a node inV , and an edge in E between
two nodes if the corresponding strokes fall into the situation of (b)
or (c). Then we solve the following standard graph labeling problem:

min .E(x) =
∑
s ∈V

θ (xs ) +
∑
(s,t )∈E

θ (xs ,xt ), (1)

where the labeling xs ∈ {0, 1} denotes if the stroke s is convex or
concave. Following (a), for the unary function, we set θ (0) = 0.4
and θ (1) = 0.6, favoring convex strokes. For the binary function,
we set θ (0, 0) = θ (1, 1) = 0.0 and θ (1, 0) = θ (0, 1) = 1.0 if the two
strokes are supposed to have the same convexity, and use 1 − θ (·, ·)
if they are supposed to be opposite. Finally, the user can specify the
convexity of selected strokes, which are constraints to the above
labeling problem for the other strokes, as a way to �x the errors
made by this automatic labeling algorithm.

To solve the graph labeling problem, we can either do an exhaus-
tive search of the combinatorial space of all possible labelings, or use
an approximate solver for e�ciency. In our implementation, we use
the algorithm by [Kolmogorov 2006]; because the number of strokes
per view is quite small, usually in the range of 10 ∼ 40, the heuristic
algorithm works very well in �nding nearly optimal solutions. Fig. 2
shows an example where long strokes were segmented into simple
strokes representing opposite surface curvatures. See Sec. 5.1 for
more examples.

3.3 Domain triangulation
For e�cient and �exible surface construction, we triangulate the 2D
domain Ω de�ned by the boundary curves Γ into a planar mesh M ,
and the height �eld surface is discretized by the lifted version of the
triangle mesh M , with the variables encoded by the z-coordinates
of the mesh vertices. We use the Delaunay re�nement algorithm
of CGAL [CGA 2016] to quickly generate a dense and high quality
mesh con�ned to the boundary curves. Note that if there are feature
curves sketched, they should be preserved by the planar mesh, so
that there are mesh edges located on the feature curves to represent
sharp features in the surface (Fig. 2(b)).

To adapt the triangle size of the planar mesh to di�erent domain
shapes, we resample the boundary curve according to the local
feature size function [Amenta and Bern 1998] de�ned over the
boundary, and the Delaunay re�nement algorithm with edge length
and angle quality criteria naturally induces smooth gradation of
triangles inside the domain (Fig. 2(b)).

3.4 Surface from curvature field
Because the bending strokes are approximate curvature lines of the
spatial surface projected on plane, we use this cue to �rst recover
the dense curvature �eld of the surface as parameterized over the
2D region, and then reconstruct the surface matching the curvature
�eld.

Problem formulation. Let the spatial surface be parameterized as
a Monge patch over the 2D domain, that is, z = f (x ,y), (x ,y) ∈ Ω.
The Weingarten shape operator dN : w → w′, w,w′ ∈ R2 is a
linear mapping that encodes both the principal curvature directions
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and magnitudes, denoted as {u, v, λu , λv }, as its two eigenvectors
and corresponding eigenvalues. Meanwhile, the shape operator can
be deduced from dN = −IIG−1, where G and II are the �rst and
second fundamental forms of the surface z = f (x ,y). As such, given
a curvature �eld, we can infer the surface shape through minimizing
the following energy:

Ematch (z) ≡
1
|Ω |

∫
Ω
‖dN · u − λuu‖2 + ‖dN · v − λvv‖2dσ . (2)

For numerical computation, the integrand is discretized as piecewise
constant over the triangle mesh M , and the energy is a summation
of the integrand for each triangle while weighted by triangle area.
In the Appendix, we show how to discretize the shape operator on a
triangle mesh, as well as how to optimize this nonlinear functional
through an iterative process, where in each iteration we solve a sim-
ple linear problem, thus making the whole process computationally
e�cient.
Remark. If there are isophotes sketched [Xu et al. 2015], they

can be naturally incorporated into the above problem: suppose we
know at a point the lighting direction l, and the isophote direction u,
they form conjugate directions with respect to the shape operator,
thus we have lTdNu = 0.

Next we discuss the computation of the curvature �eld given input
bending strokes. The curvature direction �eld {u, v} is de�ned as
a piecewise constant non-orthogonal 4-direction �eld over M , and
the curvature magnitude �eld {λu , λv } is de�ned similarly as two
piecewise constant scalar �elds.

Curvature direction �eld. We adopt the formulation of BendField
energy [Iarussi et al. 2015] to regulate the principal curvature direc-
tions of a smooth surface as projected on a plane:

Ebend_f ield (u, v) ≡
1
|Ω |

∫
Ω
‖∇uv‖2 + ‖∇vu‖2dσ , (3)

subject to u, v following bending stroke directions where available.
Here ∇v· is the covariant derivative operator; in the Appendix we
show how it is discretized on a triangle mesh. Note that the Bend-
Field energy is a bi-convex functional of the variables.

To minimize the energy under directional constraints of the bend-
ing strokes, following [Iarussi et al. 2015], we initialize u, v as a
harmonic non-orthogonal 4-direction �eld. The directions are fur-
ther re�ned through an iterative sequence of linear optimizations,
where in the k-th step the new uk , vk are solved as

argmin.
1
|Ω |

∫
Ω
‖∇uk−1v‖

2 + ‖∇vk−1u‖
2dσ .

In all our experiments, we �nd 5 iterations are su�cient for conver-
gence, thus the optimization is very e�cient.

Compared with [Iarussi et al. 2015], we gain large e�ciency im-
provement due to two factors: �rst, our discretization is on the tri-
angle mesh which is much more sparse than the pixel grid; second,
we solve the harmonic non-orthogonal 4-direction �eld through a
new approach speci�ed in the PolyVector representation [Diamanti
et al. 2014], details of which is presented in the Appendix.

Curvature magnitude �eld. Because the principal curvature values
follow a similar variation to the curvature directions, we regulate

(a) (b) (c) (d)
Fig. 4. The optimization process of a shoe model patch. (a) is the refer-
ence image and the planar sketch, with bending curves parsed into con-
vex/concave simple strokes. (b) is the surface a�er the initialization step.
(c)&(d) show surfaces a�er 3 and 5 iterations. The planar curves are projected
to the surfaces for visualization.

the principal curvature values through minimizing the following
energy:

Eλ(λu , λv ) ≡
1
|Ω |

∫
Ω
‖∇uλv ‖

2 + ‖∇vλu ‖
2 + β(‖∇uλu ‖

2 + ‖∇vλv ‖
2)dσ ,

(4)
subject to the estimated surface curvature values along the bending
strokes. Here ∇u· is now applied to scalar functions, thus becoming
the common directional derivative operator, and β > 0 is the weight
of the curvature variation term [Joshi and Séquin 2007]. In our
experiments, we set β = 0.01 to induce a weak smooth variation
of curvatures which leads to surface fairness. Note that since the
curvature directions u, v are not variables, the energy is a quadratic
functional of the curvature values which can be easily solved.

Until now, while the principal curvature directions can be solved,
we do not know how much the surface bends along a stroke; with-
out the curvature values along bending strokes as constraints, the
curvature magnitude �eld cannot be recovered through minimizing
the above energy Eλ . In the next section, we discuss how to compute
the curvature magnitudes and the spatial surface simultaneously.

3.5 Joint optimization of surface and curvature
magnitudes

We solve the height �eld surface and curvature magnitudes through
two major steps: �rst, given the convex/concave labeling of the
bending strokes, we make an initial guess of the surface shape
by assigning a uniform curvature value to the bending strokes;
second, starting with the initial guess, we iteratively update both
the curvature values along the strokes and the surface shape to
make them consistent.

Initialization. We �nd an initial estimation of the surface �rst,
so that subsequent joint optimization of surface shape and curva-
ture �eld can escape the trivial solution of a �at surface with zero
curvature everywhere that minimizes Ematch .

For each simple bending stroke with labeled convexity denoted
as sign ±, we assign to the whole stroke a constant absolute spatial
curvature value µ > 0, thus its corresponding principal curvature
is ±µ. Then we minimize the energies Ebend_f ield and Eλ under
constraints of the bending strokes, to get the complete curvature
�eld, with which Ematch is minimized to �nd an initial guess of the
spatial surface. Since we only need an initial surface estimation, the
nonlinear functional Ematch is not fully minimized in this step; in
our experiments, only one iteration of optimization is carried out.
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Note that while the value µ would certainly a�ect the surface
shape at this initialization step, random choices of µ from a reason-
able range lead to �nal surfaces with no noticeable di�erence. In
our experiments we simply set µ = 1.

Joint optimization. The shape of a planar bending stroke is af-
fected by two factors, namely the spatial shape of the stroke as
embedded in the surface and the surface orientation with respect to
the projection direction. Thus given the planar stroke, it is impossi-
ble to recover the true surface curvature along the stroke without
knowing the surface �rst, which is why we devise a joint optimiza-
tion to solve the surface curvature along a stroke and the surface
simultaneously.

The joint optimization is done through an iterative process, with
each iteration consisting of the following three steps:

(1) estimate principal curvatures by analyzing the lifted strokes;
(2) di�use curvature values through minimizing Eλ ;
(3) update surface shape by minimizing Ematch for one itera-

tion.

Note that in the process the curvature directions are unaltered; as a
result, the quadratic energy Eλ only has its constraints (i.e. curvature
values along bending stroke) varied between iterations, and can be
e�ciently optimized by factoring its normal equations once and
using back substitution for solving updated curvature values in
subsequent iterations.

normal sectionN

T
r

stroke

Estimating principal curvatures. To esti-
mate the principal curvature along a bend-
ing curve, we lift the planar curve to the
current spatial surface. For each point on
the lifted curve (see inset), the normal sec-
tion plane is spanned by the surface normal N at the point and the
curve tangent T, on which we project a neighborhood of the spatial
curve, and �t a circle to the projected image; the reciprocal of circle
radius r is the estimated principal curvature value along the curve
direction at the point. The sign of curvature is solely determined by
bending stroke convexity labeled before.

The neighborhood size to estimate curvature with should be
chosen: if the neighborhood is too big, the estimated curvature can
be too conservative and in�exible, while a size too small causes
instability and inaccuracy due to the locally noisy shape of the
lifted stroke. In our experiments, we �nd a curve segment of length
D/30 allows both �exibility and robustness, where D is the diagonal
length of the domain bounding box. For fast computation, we simply
divide a lifted stroke into segments of approximate length D/30, and
estimate the curvature for each segment, which is then assigned
to stroke points belonging to the segment. To carry out the circle
�tting for curvature estimation, we minimize the standard geometric
�tting error, plus a regularization of radius for robustness:

min
c,r

1
N

N∑
i=1
(‖pi − c‖ − r )2 + µ · r2,

where {pi } are the points to be �tted, (c, r ) de�ne the circle, and
µ = 2× 10−5 is a very small weight. This optimization is a nonlinear
least square problem with only 3 variables and is solved by Gauss-
Newton iterations.

Convergence. The joint optimization stops when the surface up-
date in step (3) is below a certain threshold. For all examples shown,
we �nd 5 iterations are su�cient for such a convergence.

Note that the input sketches may correspond to more than one
possible shape, in which case the above iterations do not necessarily
converge to the desired one, or may not converge at all. To resolve
this problem and get meaningful shapes, we need to use additional
boundary conditions to constrain the solution space. In Section 3.6
we discuss commonly used boundary conditions.

User adjustment. While the above scheme for simultaneous esti-
mation of principal curvature along strokes and surface generally
�nds the proper pattern of shape variation, it is possible that the
surface di�ers from the user expectation, which can be attributed
to two factors: 1) that the strokes are sketched with insu�cient
accuracy, and 2) the bas-relief ambiguity [Belhumeur et al. 1999]
which says that di�erently scaled height-�eld surfaces have similar
2D images. Thus the user may want to modify the strokes and adjust
the solved shape to better match sketch intention.

To facilitate the adjustment, our system allows the modi�cation
of sketched strokes through curve editing, the scaling of curvatures
along selected parts of strokes, and the scaling of the whole cur-
vature �eld. Once the shape of a sketched curve is modi�ed, the
whole process of single-view modeling is recomputed to update the
surface. When the curvatures along selected parts of strokes are
scaled (c.f. Fig. 12), the curvature magnitude �eld is recomputed by
minimizing Eλ under new constraints, and the surface is updated by
fully optimizing Ematch . If the user �nds the overall shape can be
more curvy or otherwise, the curvature magnitudes are uniformly
scaled and the surface updated by minimizing Ematch fully.

3.6 Boundary conditions and other strokes
Boundary conditions. The bending strokes and the curvature �eld

derived specify di�erential properties of the surface. To determine a
unique surface, we still need su�cient boundary constraints. We im-
pose the following constraints on the height values along boundary
curves Γ:

• positional constraint - all boundary points should be close
to the drawing plane or a speci�ed boundary curve z0(p),
which amounts to penalizing ω0

|Γ |

∫
p∈Γ (z(p) − z0(p))

2dp,
where z0(p) = 0 for planar boundary,
• regularity constraint - the boundary curve should be smooth

in space, by penalizing the variation of heights ω1
|Γ |

∫
p∈Γ z

′(p)2dp.

Hereω0,ω1 > 0 are weights, |Γ | is the length of boundary curve. The
sum of the two terms denoted Ebdry , a quadratic function of z, is
added to Ematch when solving for the height �eld surface. For many
examples we wish the boundary curve to be exactly as prescribed,
and a big ω0 is used; on other cases where we look for more �exible
boundary curves, a decreased value for ω0 is adopted. For example,
the container (Fig. 1) has ω0 = 100, the leaf model (Fig. 2) ω0 = 10,
and the outer boundary of hat and shell (Fig. 6) have ω0 = 100 and
0.1 respectively, to allow the natural formation of curvy boundaries;
for the rest of the examples, we simply use a big ω0 = 106 to stick
to the given boundaries. We have used ω1 = 1 for all the test cases.
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Handling the other strokes. Strokes other than bending curves
have their speci�c properties to impose on the constructed surface
(Sec. 3.2.1). Here we discuss in detail how they are incorporated
when solving for the surface. Nv

Nbdry

f

Contour curves provide normal vector con-
straints on the surface at the boundary. Specif-
ically, the normal vector of the contour curve
in plane (see inset, Nbdry ) should also be or-
thogonal to the surface tangent plane there. However, given that the
border triangle f has a non-vanishing planar projection, it can never
be orthogonal to Nbdry . So in practice, we require the normal of the
border triangle to be an interpolation of the boundary normal Nbdry
and the surface normal Nv at the interior vertex of the triangle, for-
mally ∇z = g, where the interpolated normal vector is converted
to gradient g such that (gx , gy ,−1) ‖ (2Nv + Nbdry ). The interpo-
lation ratio of 2 : 1 is an empirical value that we �nd balances the
contour normal constraint and surface regularity, as a ratio too large
may lead to border faces in plane, while a ratio too small can cause
distorted border triangles with extreme heights. The contour nor-
mal constraint thus is denoted Ecntr =

1∑
f |f |

∑
f | f |‖∇zf − gf ‖2

which is summed over contour-border triangles.
If for certain cases, the user wants a strict perpendicularity be-

tween contour normals and the surface, we allow postprocessing of
the computed surface to meet the requirement, by a shape preserv-
ing Laplacian deformation [Sorkine et al. 2004] of the surface plus
enforcing the contour normal constraint and penalizing point-wise
distance from the original surface mesh.

ridge

valley

The ridge/valley curves are converted to a set
of bending lines with known convex/concave la-
bels (see inset). The generated bending strokes
are sampled along the ridge/valley curves, and
orthogonal to them. They are then included as input to the above
mentioned surface computation algorithm. In our implementation,
the distance between consecutive generated bending strokes is
around D/10, which is also the length of a generated bending stroke,
whereD is the bounding box diagonal length of the planar sketching.
An example shape modeled with many ridge and valley curves is
shown in Fig. 6.

A �at stroke imposes a constraint on the normal vectors of mesh
faces crossed by the stroke, requiring the normal vectors to be
parallel. This condition is translated into additionally penalizing
the variation ‖∇zi − ∇zi+1‖2 when solving surface, where i in-
dexes the sequence of N faces crossed, and ∇z the gradient of
the height function on a mesh face. We denote this term Ef lat =
ω
N

∑N
i=1 ‖∇zi − ∇zi+1‖

2, with weight ω = 103 in our experiments.
A sharp feature, on the other hand, induces a sharp angle be-

tween two neighbor triangles across it. Thus it is implemented by
prescribing the di�erence between height �eld gradients on the
triangle pairs i, j crossing it: ‖∇zi − ∇zj − se⊥i j ‖

2, where e⊥i j ∈ R2

is the direction vector of the shared edge between i, j rotated by
90◦, and s ∈ R is the target di�erence magnitude. The penalization
is denoted Ef ea =

1
|L |

∑
i, j |ei j | · ‖∇zi − ∇zj − se⊥i j ‖

2, with |L| the
total length of sharp feature curves.

Note that ∇zi −∇zj measures the isotropic curvature [Koenderink
and van Doorn 2002; Pottmann and Liu 2007] across the shared edge,

(a) (b) (c)
Fig. 5. Screen shots of the prototype multi-view modeling system. (a) shows
the sketched strokes for the front patch, (b) shows the computed surface
(blue) along with a previously created side patch (gray), and (c) the two
patches are merged tightly. A complete model is shown in Fig. 6.

which approximates the Euclidean curvature of the surface but is
di�erent. We adopt such a measurement because of its simplicity
as a linear function of the height variables, and its known direction
along e⊥i j which has been used in other situations like modeling
discrete self-supporting surfaces [Liu et al. 2013; Vouga et al. 2012]
where the convexity of the lifted surface is critical.

To summarize, the complete energy for solving the height surface
is Ematch + Ebdry + Ecntr + Ef lat + Ef ea , of which all but Ematch
are quadratic functionals. Thus the computational complexity for
solving the surface does not change.

4 MULTIPLE VIEW MODELING SYSTEM
In this section we consider the modeling of more complex 3D objects
which cannot be sketched from a single view due to occlusions.
For many symmetric objects, we may sketch one side and simply
mirror the patch to the other side to form the complete shape, like
many examples shown in this paper (Figs. 1,9,13). For other objects,
surface patches for di�erent views should be sketched separately and
merged. We present a multi-view modeling process that supports the
�exible change of views for sketching and the seamless combination
of sketched patches. A screen shot of our prototype modeling system
is shown in Fig. 5. The supplemental video shows complete sessions
of using the system to create various shapes.

System overview. The building blocks of our system are a set of
drawing planes positioned appropriately in the 3D space, over which
the user sketches and the height �eld surfaces are constructed.

To assist the drawing of objects with complex boundary curves,
our system also supports the modeling of spatial boundary curves
through sketching. We implement the curve modeling as a spline
�tting procedure, by converting a boundary curve to B-spline curve
and �tting it to user-drawn curves on speci�ed drawing planes. The
curves can also be modeled by more sophisticated methods (e.g.
[Bae et al. 2008]) and imported to our system.

Finally given the surface patches corresponding to multiple views,
we deform the surface patches in a shape-preserving way and seam-
lessly merges them into complete objects.

Drawing plane. The sketched strokes are mapped to a drawing
plane through inverse perspective projection: for each point of a
stroke, a ray starts from the camera, passes through the point in
the image plane and hits the drawing plane at the mapped stroke
point. Drawing planes can be created where necessary, and can be
modi�ed by rigid transformations to more appropriate position and
orientation for sketching and modeling.

Merging surface patches. As a new surface patch of a conceived 3D
shape is sketched, it should be registered and merged with the other
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Fig. 6. Five more shapes created with our method. The shell is a single surface patch, and the others are made of multiple view sketching. The shell, boot and
teapot models are sketched by referring to the real world images, while the lotus seed pod and hat are created freely without specific references. Due to space
limit, the sketches for the bo�om of teapot, the back side and bo�om of boot, and the two side views of hat, are not shown here.

surface patches. To �nd the correspondence with the other patches,
we simply project the other patches in 3D onto the current drawing
plane through orthogonal projection Π, and a correspondence is
formed between two spatial points p of the current patch and q of
the rest patches whenever their projected points Π(p) = Π(q). Thus
for each vertex of the rest patches, we �nd its corresponding point
in the current patch if exists, and put the pair into a set C .

To merge the patches, we eliminate the gap in-between through a
shape preserving deformation of the current patch and its neighbor
patches with established correspondences, by solving the optimiza-
tion problem: min .{x} Elaplace + wEcorr , where Elaplace is the
Laplacian surface deformation energy [Sorkine et al. 2004], and

Ecorr =
∑
i ∈C
‖pi − qi ‖2 + ‖ni · (pi − qi )‖2,

with pi = αxi0 + βxi1 + (1 − α − β)xi2 represented in barycentric
coordinatesα , β of the vertices xi0, xi1, xi2 of the triangle containing
pi , ni the normal vector of the vertex qi . w = 105 is a large weight
to force merging of the patches tightly.

In Fig. 5 we see a hat model is being created through multiple
views, with a new patch sketched and merged with previously cre-
ated patches. Note that the spatial wireframe is modeled beforehand
as boundary curves to anchor the individual patches.

5 RESULTS AND DISCUSSION
In Figs. 1 and 6 we show more freeform 3D shapes created through
our approach, which contain both single surface patches and com-
plex models made of multi-view sketching. Still more examples are
included in the supplemental materials.

With our prototype system running on a desktop PC with a CPU
of 4 cores and 3.4GHz, the run time for a typical sketch with 20
strokes, and a domain triangulation with 7k faces, takes about 80ms
for stroke parsing and meshing, 1200ms for curvature direction �eld
computation, and 1700ms for solving the height surface, thus around
3s in total. Table 1 lists the runtime breakdown of concrete examples.
Note that while here we measured the total execution time for each
example, in the typical scenario, the user incrementally inputs more
strokes to explore and re�ne the models, which suggests that for

Example #face/vert #stroke(#�ip) meshing bend �eld surfacing
Crane Fig. 1 7.4k/4.0k 28(0) 78 1202 1664
Pillow Fig. 1 8.4k/4.4k 54(0) 91 1651 1997
Teapot Fig. 1 8.6k/4.5k 24(3) 82 1727 2218

Container Fig. 1 8.2k/4.3k 17(2) 75 1744 2083
Skirt(front) Fig. 1 6.5k/3.4k 35(1) 67 1289 1661
Skirt(back) Fig. 1 5.9k/3.1k 24(0) 81 1154 1516

Leaf Fig. 2 8.0k/4.2k 22(1) 110 1303 1809
Shell Fig. 6 8.7k/4.5k 33(0) 64 1858 2542
Boot Fig. 6 5.8k/3.0k 21(5) 77 955 1342

Table 1. Runtime breakdown of several examples, measured in ms . #flip
is the number of user fixed labels of stroke convexity. For examples with
multiple patches, the data is for the patches with shown sketches. The
convexity labeling step (not shown here) always takes less than 1ms .

faster feedback and smoother interaction, we can use a simple multi-
resolution strategy: we compute a preview of the updated surface
with a lower resolution mesh quickly, and replace it with a �ner
mesh of more details when ready. Indeed, the time cost has been
measured to be roughly proportional to the mesh size.

5.1 Algorithm validation
Convexity labeling. The automatic

convexity labeling of bending strokes
is e�ective in many cases (see Figs. 2,4,9,
Table 1). However, there are cases
when the user needs to do manual �xations. One such situation is
when the strokes do not have local proximity and thus the rules
for automatic labeling cannot apply; as a consequence the strokes
may simply be labeled as convex and the user should �x it when
necessary (see Boot (Fig. 6) for example). Another situation is that
the automatic labeling of strokes happens to be the opposite of ex-
pectation; this is due to the bas-relief ambiguity which requires user
�xation. A labeling �xation example is shown in inset, where the
user has to �ip the labeling of three strokes (marked by red circle)
and the rest are automatically updated.

Comparison with ground truth shapes. We compare the surface
computed from a planar sketching consisting of accurate projected
curvature lines of a torus patch against the ground truth surface
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(a) (b) (c)

1.5%

0%

Fig. 7. Comparison with a 1/8 torus. (a) the input planar sketch. (b) the
curvature field. (c) the solved surface color-coded by the distance from
ground truth. The maximum error is 1.5% of bounding box diagonal length,
and the average error is 0.5%. The correct boundary curve is prescribed.

0%

4%

Fig. 8. Compare a sketched shoe surface (formed with two patches whose
sketches are shown on both sides) with known ground truth 3D model.
The result surface is color-coded by its di�erence from ground truth. The
maximum error is 4% of bounding box diagonal length, and average error
0.7%. The correct boundary curve is prescribed.

(Fig. 7). The error from ground truth is very small, proving that the
iterative surface optimization from planar strokes is e�ective and
accurate. We also take a known 3D shoe model and try to recover
the model by sketching. As shown in Fig. 8, a sparse number of
strokes drawn manually already lead to a 3D model very close to
the ground truth. Note that for the two comparisons, the boundary
curves are prescribed according to ground truth data.

5.2 User evaluation
The proposed sketch-based modeling approach is also evaluated
for its e�ectiveness and intuitiveness by novice users. We have
invited nine participants to learn and use the method to create
freeform shapes. To teach the users how to sketch shapes with bend-
ing strokes and other strokes, we show them three examples with
target images, the strokes we sketched and the corresponding 3D
models; they can also try to practice their understanding of the
method with some of the given examples. Such a training session
usually takes 30 mins. After that, each participant sketches three
target shapes which are depicted through images. We �nd that the
participants generally created satisfying shapes within an average
period of 10 mins for each target shape. Some of the training exam-
ples and user created testing models are shown in Fig. 9. Finally, we
ask the participants to rate their experiences with the sketch-based
modeling method and how intuitive and e�ective it is. The overall
rating is again quite positive. The details of the user evaluation are
included in the supplemental materials.

Among the nine participants, two are artists who work on a daily
basis with 3D modeling suites Autodesk Maya and SolidWorks,
respectively. They �nd that the new approach is very quick to learn,
especially compared with the 3D modeling suites they use, and
signi�cantly shortens the time required to create draft 3D shapes

Fig. 9. Training and test examples used for user evaluation. The first row is
an example used for training the users. The other two rows show examples
sketched by di�erent users.

which can be further edited for details in other software, with an
estimated saving of 2/3 of time cost with their commonly used tools.

5.3 Comparisons
BendField [Iarussi et al. 2015]. In [Iarussi et al. 2015], the bending

strokes are used to derive a projected curvature direction �eld, and
the normal vectors for 3D visualization are recovered by transform-
ing the two principal curvature directions u, v ∈ R2 at each point
into orthogonal 3D vectors −→U ⊥ −→V ,−→U ,−→V ∈ R3 while striving for
direction smoothness, exploiting the fact that the principal direc-
tions of a spatial surface should be orthogonal except for umbilical
points. Such an approach recovers smooth normal vectors good
for rendering a 3D impression for more regular shapes which are
formed of surface patches with relatively uniform normals; how-
ever, as we show next through examples (Figs. 10&11), it fails to
�nd proper normal estimations for more freeform shapes, which
further prohibits the next step of surface reconstruction.

In contrast, in our approach we model a complete curvature
tensor �eld with both curvature directions and magnitudes, and use
it to drive the reconstruction of spatial surface directly, rather than
through normal vectors. As a result, our approach enables a robust
surface reconstruction algorithm, as is demonstrated through the
examples.

In this comparison, to build a surface from normal vectors for the
BendField method, we take the standard approach of integrating
normal vectors to form surfaces, by solving:

min .
∑

i ∈faces
‖ni · (pi1 − pi0)‖2 + ‖ni · (pi2 − pi0)‖2+γ

∑
j ∈verts

‖∆pj ‖2,

(5)
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where ni is the normal vector for the i-th triangle face, pi0, pi1, pi2 ∈
R3 its vertices, and ∆pj the Laplacian of the j-th vertex to measure
surface smoothness. We use a coe�cient γ = 0.1 to regulate the
surface reconstruction. The boundary conditions are simply to �x
the boundary vertices in plane for the two examples shown.

By observing the �rst test case of a pear shape, we �nd the curva-
ture direction �elds of ours and BendField are almost the same, but
the reconstructed normal vectors are largely di�erent: the normal
vectors of BendField result do not capture the proper shape vari-
ation. The BendField method allows the user to manually �x the
normal orientation errors of regions, which is to click on a point that
belongs to the wrongly oriented region and propagate the �ipped
orientation to the entire region. We tried to �x such orientation
errors in the initial normal estimation, as shown in Fig. 10(g); as we
see in Fig. 10(h), after the manual �xation the recovered normals
show the variation of the shape more clearly. However, the new
normals are not accurate enough for reconstructing a proper sur-
face (Fig. 10(i)). Note that we tried to �ip normals which seem to
be obviously wrongly oriented, and there can be other corrections,
but it is unclear if any other correction will lead to a better normal
estimation or surface reconstruction.

In the second test case of a more freeform bird model, we see the
normal estimations by BendField do not capture the shape varia-
tions (Fig. 11(e)), and the �xation of normal orientations does not
erase this problem completely (Fig. 11(h)). In addition to normal and
surface reconstruction, this example further shows how the curva-
ture direction �eld by our method di�ers from that by BendField
method, especially around the neck and head of the bird model. It
demonstrates that our curvature direction computation method pro-
duces smooth direction �elds with better alignment to the sketched
strokes than BendField, which can be attributed to the adoption
of a convex harmonic 4-direction �eld formulation as well as the
reduced number of variables in a triangle mesh discretization, com-
pared with the nonconvex mixed-integer formulation and a dense
pixel grid for the BendField approach.

True2Form [Xu et al. 2014]. Our approach is largely di�erent from
[Xu et al. 2014], where a majority of planar curves are also regarded
as projected curvature lines but the lifting of the 2D curve network to
3D is based on regularities of the curve network for many man-made
objects. In comparison, here we do not assume the sketches form a
connected and nicely laid out curve network, which is more suitable
for modeling freeform shapes with complex curvature patterns. On
the other hand, while True2Form is able to convert multiple-layered
curve networks into 3D, our method models each patch as a height
�eld and cannot handle multiple layers.

Shape from shading. We compare our method with the state-
of-the-art shape from shading method [Barron and Malik 2015].
As shown in Fig. 12, the shape-from-shading reconstruction as a
well-known ill-posed problem is frequently incapable of recovering
quality shapes even if there are advanced priors and simultaneous
estimation of lighting, re�ectance and geometry.

Biharmonic surfaces. Many contour-
based modeling methods build smooth
shapes by solving the biharmonic equation ∆2x = 0 under various

(a) (b) (c)

(I)

(d) (e) (f)

(II)

(g) (h) (i)

(III)

Fig. 10. Comparison with the BendField method[Iarussi et al. 2015] through
a pear shape. (I) are results of our method, (II) of BendField, and (III) of Bend-
Field with normal orientation editing. (a)&(d) are the curvature direction
fields. (b),(e),(g),(h) are normal maps, with (e)&(h) the results of BendField,
and (g) showing normal flipping operations (at red dots). (c),(f),(i) show
reconstructed surfaces.

(a) (b) (c)

(I)

(d) (e) (f)

(II)

(g) (h) (i)

(III)

Fig. 11. Comparison with the BendField method[Iarussi et al. 2015] through
a bird shape. See caption of Fig. 10 for explanation. Note how the direction
fields di�er in this case, and our result be�er aligns with the sketched curves.
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(a) (b) (c) (d)
Fig. 12. Comparison with a shape-from-shading reconstruction
method[Barron and Malik 2015]. Objects with complex shading/material
generally fails automatic SFS methods (b). With our approach, a sketching
with few curves (c) can create a quality 3D model (d). The di�erent widths
of bending strokes in (c) show the user adjustment of stroke curvature
scaling (Sec. 3.5).

Fig. 13. A failure case for 3Sweep [Chen et al. 2013] is easily created by
our method. The 3D model is made of a patch from the sketching and its
symmetric copy.

constraints [Joshi and Carr 2008; Nealen et al. 2007; Yeh et al. 2016].
While �exible, the biharmonic equation does not allow directional
control of the geometry, and excludes anisotropic shapes like torus
as solutions. On the other hand, in our approach the modeling of
the complete curvature tensor �eld avoids this limitation. In inset
we show the biharmonic surface given the boundary conditions of
a torus patch, which largely di�ers from the ground truth; the user
may manually specify a larger mean curvature to the interior to
further in�ate the surface, but it is di�cult and unintuitive to assign
accurate curvature values. Note that a similar limitation with bihar-
monic surfaces is also discussed in [Pan et al. 2015] (Fig.10), where
an undesirable isotropic surface is compared with the result of [Pan
et al. 2015] which also has directional control through curvature
tensor modeling.

Other methods. As is mentioned before, many previous methods
target speci�c classes of geometric objects. Our method can thus be
a useful complement to the existing works. For example, a failure
case of 3Sweep [Chen et al. 2013] can be easily modeled by our
method (Fig. 13).

6 CONCLUSION
We have presented a sketch-based modeling method that utilizes
the bending strokes primarily to model freeform shapes with com-
plex curvature patterns. The approach has been demonstrated to be
intuitive to users, and allows the quick creation of a large variety of
interesting shapes. To �nd surface from the bending strokes, techni-
cally we solve several key problems, including the disambiguation of
bending strokes representing convex/concave curvature, the estima-
tion of bending magnitudes along the strokes, and the construction
of surface from the sparse bending strokes through modeling a
smooth curvature �eld conforming to the strokes. To handle com-
plex objects with self-occlusions, we extend to multiple views, where

surface patches for all the views are sketched and merged to form
the �nal shape.

While through sketching bending strokes with the new approach
we can model a large variety of freeform shapes with desired cur-
vature patterns, there obviously remain many more shapes that
cannot be easily created with this approach alone. Our technique
makes a valuable complement to the diverse and powerful toolbox
of geometric modeling through sketching and interactions.

Limitations. To model each surface patch, we use a height-�eld
representation which cannot handle self-occluding shapes or lay-
ered objects. To mitigate this limitation, we provide the multi-view
framework that allows sketching patches from di�erent viewpoints
and merging them to form more complex shapes. Still, the incremen-
tally added new patches have to be anchored, by either referencing
the previous patches, or relying on the user speci�cation of a spatial
wireframe, which is nontrivial and targeted by numerous works
[Bae et al. 2008; Schmidt et al. 2009; Xu et al. 2014]. Thus we empha-
size that our work complements and is best integrated with other
sketch-based modeling methods.

Future work. The current approach and its user interface can
be improved in many aspects. For example, with pressure sensitive
pens the sketching of bending strokes can naturally incorporate the
curvature scaling ratio. The images if available can be used to extract
information like boundary or shading to assist the shape creation
process. The texturing and animation of the created 3D shapes are
highly desirable features for a more complete modeling tool. We
would also like to explore how to better integrate the proposed
method with existing 3D modeling techniques and systems.

APPENDIX
Discretization of dN. Because the shape operator dN = −IIG−1,

we can discretize it through de�ning the �rst and second fundamen-
tal forms of the height surface z = f (x ,y) discretized as a piecewise
linear function over the triangle mesh domain M .

For each triangle ∆i jk ∈ M with vertices indexed by i, j,k , the
gradient of height �eld function over the triangle is ([Botsch et al.
2010])

∇f = (f ′x , f
′
y )
T = (fj − fi )

(xi − xk )⊥

2Ai jk
+ (fk − fj )

(xj − xi )⊥

2Ai jk
. (6)

The unit normal vector for the lifted triangle is thusn = (n1,n2,n3)T

=
(f ′x ,f

′
y,−1)√

f ′2x +f
′2
y +1

.

The �rst fundamental form is readily computed by

G =
©­«

1 + ( ∂f∂x )
2 ∂f

∂x ·
∂f
∂y

∂f
∂x ·

∂f
∂y 1 + ( ∂f∂y )

2
ª®¬ . (7)

The second fundamental form II = n3H involves the Hessian H
which has to be de�ned for a triangle mesh. Since Hessian is simply
the Jacobian of gradient, we have δxT Hδx = δxT δ∇f , where δx
denotes a 2D tangential move, and δ∇f the corresponding change
of gradient. For the discrete setting (see Fig. 14), δx denotes the
vector from center of one triangle to that of its neighbor, and δ∇f
the di�erence of the gradients at the two triangles.

Note that since δx is determined by the triangulation, and δ∇f
is a linear function of vertex heights, the equation for Hessian is
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Fig. 14. The tangential movement (red vector) and the corresponding change
of vector field (the two black vectors located at the two triangles). The
tangential movement starts from the circumcenter of the current triangle,
and points to the circumcenter of the neighbor triangle. The vector field
can be the gradient field, or the principal curvature direction field, and is
defined constant per triangle of the domain mesh.

indeed also linear with respect to Hessian entries and the vertex

heights. In particular, suppose H =
(
a b
b c

)
, δx = (δx ,δy )T , and

δ∇f = (дx ,дy )
T , we have:(
δ2x , 2δxδy ,δ

2
y

) ©­«
a
b
c

ª®¬ = δxдx + δyдy . (8)

For each inner face with three neighbor triangles sharing common
edges, we have three such equations which are assembled into a
linear equation system Ay = b, with y = (a,b, c)T ; the linear system
is solved as y = A−1b, so we get H again as a linear function of
vertex heights appearing in the vector b.

To minimize the nonlinear functional Ematch , in one iteration we
assume the normal vectors are �xed; thus G is known, and II = n3H
is a linear function of vertex heights, making dN a linear function
as well. As a result, Ematch is linearized in the iteration, and can be
solved e�ciently.

Discretization of ∇uv. In our planar domain setting, ∇uv = ∇v ·u,

where ∇v =
(
∇vTx
∇vTy

)
consists of the gradients of the two com-

ponents of v. Next we derive ∇v on the triangle mesh as a linear
function of v.

By de�nition, we have ∇vδx = δv, where δx denotes a 2D tan-
gential move, and δv the corresponding change of v. For the discrete
setting (Fig. 14), δx again is the vector from the center of one tri-
angle to that of its neighbor, and δv the di�erence of v on the two
triangles.

For a triangle with two or three neighbors sharing common edges,
each pair formed by the triangle and one of its neighbors leads to an
equation, thus we have ∇vδxj = δvj , j = 1, 2 or 1, 2, 3. We assemble
the equations into a system ∇vA = B, with A = (δx1,δx2, · · · ) and
B = (δv1,δv2, · · · ). Then we solve for ∇v in the least square sense
∇v = BA+, where A+ is the right pseudo-inverse matrix of A. Since
δx (and thus A) is known, ∇v is indeed solved as a linear function
of v appearing in B.

Harmonic non-orthogonal 4-direction �eld computation. In the
PolyVector representation [Diamanti et al. 2014], the pair of direc-
tions u, v of a non-orthogonal 4-direction �eld are converted to
unit complex numbers u,v ∈ C, and the direction �eld is encoded
by another pair of complex variables a = u2 + v2 and b = u2v2,
which is derived from the coe�cients of the polynomial equation
(z2 − u2)(z2 −v2) = 0, z ∈ C.

Given the strokes, the harmonic 4-direction �eld is found by
solving the following optimization problem:

Minimize Ef ield (a,b) = Esmooth + ωcEconstraint + ωoEor tho
(9)

with ωc > 0 the weight of directional constraint, and ωo the weight
of orthogonality of theu,v directions. We usedωc = 103, ωo = 10−5
in our implementation. The direction �eld smoothness energy is

Esmooth =
1
|Ω |

∑
f ∼д

|ef д | ·
(
|af − aд |

2 + |bf − bд |
2
)
, (10)

where the pair of triangles f and д are adjacent at the edge ef д , and
|ef д | denotes the area of triangles formed by the edge and the two
centroids of f ,д.

The stroke direction constraint on the direction �eld is de�ned
by plugging the stroke direction into the polynomial equation and
taking the residual:

Econstraint =
1
|Ω |

∑
f

| f | · |u2f af − bf − u
4
f |

2, (11)

where f indexes the triangles with stroke constraints, and uf ∈ C
is the tangent direction of the stroke crossing the triangle.

The very mild requirement of orthogonality for the �eld directions
is here to make sure the directions can be solved even when the
constraints are biased and not su�cient for determining the two
sets of crossing directions, for example, when the input strokes are
a set of parallel straight lines. The energy is simply a penalization
of the magnitude of a:

Eor tho =
1
|Ω |

∑
f ∈M

| f | · |af |
2. (12)

Note the optimization is a standard quadratic optimization, which
can be solved e�ciently through solving a linear equation system.
After the optimal solution a,b is found for the harmonic direction
�eld, the u,v directions are recovered from them.
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